98%
921
2 minutes
20
Background: Studies evaluating the effects of cancer treatments are prone to immortal time bias that, if unaddressed, can lead to treatments appearing more beneficial than they are.
Methods: To demonstrate the impact of immortal time bias, we compared results across several analytic approaches (dichotomous exposure, dichotomous exposure excluding immortal time, time-varying exposure, landmark analysis, clone-censor-weight method), using surgical resection among women with metastatic breast cancer as an example. All adult women diagnosed with incident metastatic breast cancer from 2013-2016 in the National Cancer Database were included. To quantify immortal time bias, we also conducted a simulation study where the "true" relationship between surgical resection and mortality was known.
Results: 24,329 women (median age 61, IQR 51-71) were included, and 24% underwent surgical resection. The largest association between resection and mortality was observed when using a dichotomized exposure [HR, 0.54; 95% confidence interval (CI), 0.51-0.57], followed by dichotomous with exclusion of immortal time (HR, 0.62; 95% CI, 0.59-0.65). Results from the time-varying exposure, landmark, and clone-censor-weight method analyses were closer to the null (HR, 0.67-0.84). Results from the plasmode simulation found that the time-varying exposure, landmark, and clone-censor-weight method models all produced unbiased HRs (bias -0.003 to 0.016). Both standard dichotomous exposure (HR, 0.84; bias, -0.177) and dichotomous with exclusion of immortal time (HR, 0.93; bias, -0.074) produced meaningfully biased estimates.
Conclusions: Researchers should use time-varying exposures with a treatment assessment window or the clone-censor-weight method when immortal time is present.
Impact: Using methods that appropriately account for immortal time will improve evidence and decision-making from research using real-world data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9627261 | PMC |
http://dx.doi.org/10.1158/1055-9965.EPI-22-0495 | DOI Listing |
Braz Oral Res
September 2025
Universidade de São Paulo - USP, School of Dentistry of Ribeirão Preto, Department of Pediatric Dentistry, Ribeirão Preto, SP, Brazil.
Tumor necrosis factor-alpha (TNF-α) is a cytokine involved in the immune-inflammatory response. It can induce an odontoblastic phenotype and enhance biomineralization in dental pulp mesenchymal stem cells but does not have the same effect on osteoblasts. The reasons for this differential response, despite the shared lineage of these cell types, are not yet clear.
View Article and Find Full Text PDFPurpose: In Armenia, a lower-middle-income country, cancer causes 21% of all deaths, with over half of cases diagnosed at advanced stages. Without universal health insurance, patients rely on out-of-pocket payments or black-market channels for costly immunotherapies, underscoring the need for real-world data to inform equitable policy reforms.
Methods: We conducted a multicenter, retrospective cohort study of patients who received at least one dose of an immune checkpoint inhibitor (ICI) between January 2017 and December 2023 across six Armenian oncology centers.
Gut Liver
September 2025
Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea.
Background/aims: Despite medical advances in recent decades, the mortality rate of advanced liver cirrhosis remains high. Although liver transplantation remains the most effective treatment, candidate selection is limited by donor availability and alcohol abstinence requirements. Bone marrow-derived mesenchymal stem cell (BM-MSC) transplantation has shown promise for the treatment of advanced cirrhosis.
View Article and Find Full Text PDFEClinicalMedicine
September 2025
Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China.
Background: The substantial burden of cardiovascular diseases highlights the urgent need for cost-effective interventions to mitigate their impact. While existing evidence on the cardioprotective effect of the influenza vaccine comes primarily from populations with cardiovascular comorbidities, these studies remain susceptible to several sources of bias, including immortal time bias and unmeasured confounding. To attenuate these limitations, our study aimed to assess the effect of influenza vaccination on cardiovascular events in an older population in China, utilizing a target trial emulation framework in conjunction with a proximal causal inference (PCI) approach.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Department of Pathology & Laboratory Medicine and McAllister Heart Institute, University of North Carolina Chapel Hill;
Endothelial cells (ECs) play a central role in regulating fatty acid (FA) transport from the bloodstream into metabolic tissues, yet tools to quantify EC FA uptake in a reliable, scalable manner remain limited. Here, we present a rapid, quantitative, and cost-effective assay to measure FA uptake in ECs using fluorescent FA analogs (BODIPY-C12 and BODIPY-C16), which allow investigation of chain length-specific uptake dynamics in a 96-well plate format. The protocol incorporates positive (3-hydroxyisobutyrate, lactate) and negative (niclosamide) controls and is validated in both primary (HUVECs) and immortalized (EA.
View Article and Find Full Text PDF