98%
921
2 minutes
20
Automatic seizure detection algorithms are necessary for patients with refractory epilepsy. Many excellent algorithms have achieved good results in seizure detection. Still, most of them are based on discontinuous intracranial electroencephalogram (iEEG) and ignore the impact of different channels on detection. This study aimed to evaluate the proposed algorithm using continuous, long-term iEEG to show its applicability in clinical routine. In this study, we introduced the ability of the transformer network to calculate the attention between the channels of input signals into seizure detection. We proposed an end-to-end model that included convolution and transformer layers. The model did not need feature engineering or format transformation of the original multi-channel time series. Through evaluation on two datasets, we demonstrated experimentally that the transformer layer could improve the performance of the seizure detection algorithm. For the SWEC-ETHZ iEEG dataset, we achieved 97.5% event-based sensitivity, 0.06/h FDR, and 13.7 s latency. For the TJU-HH iEEG dataset, we achieved 98.1% event-based sensitivity, 0.22/h FDR, and 9.9 s latency. In addition, statistics showed that the model allocated more attention to the channels close to the seizure onset zone within 20 s after the seizure onset, which improved the explainability of the model. This paper provides a new method to improve the performance and explainability of automatic seizure detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2022.3199206 | DOI Listing |
PLoS One
September 2025
Department of Neurology, The University of Kansas Medical Center, Kansas City, Kansas, United States of America.
Background: The potential for racial disparity using urine drug screening (UDS) in patients with seizures is sparsely reported. This study aims to determine racial and ethnic disparities when ordering UDS in patients with suspected seizures in the emergency department (ED).
Methods: In this retrospective study, we identified patients over the age of 18 with suspected seizures who presented to the ED at the University of Kansas Medical Center between October 2017 and October 2020.
IEEE J Biomed Health Inform
September 2025
Epilepsy, a highly individualized neurological disorder, affects millions globally. Electroencephalography (EEG) remains the cornerstone for seizure diagnosis, yet manual interpretation is labor-intensive and often unreliable due to the complexity of multi-channel, high-dimensional data. Traditional machine learning models often struggle with overfitting and fail in fully capturing the highdimensional, temporal dynamics of EEG signals, restricting their clinical utility.
View Article and Find Full Text PDFEur J Case Rep Intern Med
August 2025
Division of Internal Medicine, University Hospital of Basel, Basel, Switzerland.
Unlabelled: Encephalitis is a potentially life-threatening condition with infectious or autoimmune aetiologies. Autoimmune encephalitis includes paraneoplastic variants associated with specific onconeural antibodies such as anti-Hu, frequently linked to malignancies. Herpes simplex virus type 1 (HSV-1) is the leading infectious cause in adults.
View Article and Find Full Text PDFJ Neural Eng
September 2025
University of Pennsylvania, 3400 Spruce Street, Philadelphia, Pennsylvania, 19104-6243, UNITED STATES.
New implantable and wearable devices hold great promise to help patients manage their seizure disorders. One proposed application is measuring the rate of interictal epileptiform discharges as a biomarker of medication levels and seizure risk. This study aims to determine whether interictal epileptiform spike rates (spikes) are independently associated with anti-seizure medication (ASM) levels and evaluate whether spike rates are a reliable biomarker for ASM levels.
View Article and Find Full Text PDFJ Feline Med Surg
September 2025
Department for Small Animals, Veterinary Faculty, Leipzig University, Leipzig, Germany.
ObjectivesThe objective of this study was to evaluate the occurrence of voltage-gated potassium channel (VGKC) antibodies and the pattern of MRI changes in cats with complex partial seizures with orofacial involvement (CPSOFI), as well as to investigate whether there are factors influencing survival that could be used as prognostic markers in those cats.MethodsCats with CPSOFI were identified retrospectively. The following data were retrieved from the hospital database: signalment, age at first seizure and presentation, the presence of antibodies against VGKC (leucine-rich glioma inactivating factor 1 (LGI1), contactin-associated protein 2 (CASPR2)) and cerebrospinal fluid (CSF) analysis findings.
View Article and Find Full Text PDF