Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Presented here are the synthesis and gas-phase photocatalytic CO reduction of an anionic porous Zn-metalated porphyrin metal-organic framework (MOF) induced by an ionic liquid. The desired CO affinity and deep conduction band position of the MOF catalyst provide strong kinetic and thermodynamic advantages for photocatalytic CO to CH conversion with high selectivity (∼70%) in HO vapor.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.2c01517DOI Listing

Publication Analysis

Top Keywords

anionic porous
8
porous zn-metalated
8
zn-metalated porphyrin
8
porphyrin metal-organic
8
metal-organic framework
8
gas-phase photocatalytic
8
photocatalytic reduction
8
framework pts
4
pts topology
4
topology gas-phase
4

Similar Publications

3D printing, as a versatile additive manufacturing technique, offers high design flexibility, rapid prototyping, minimal material waste, and the capability to fabricate complex, customized geometries. These attributes make it particularly well-suited for low-temperature hydrogen electrochemical conversion devices-specifically, proton exchange membrane fuel cells, proton exchange membrane electrolyzer cells, anion exchange membrane electrolyzer cells, and alkaline electrolyzers-which demand finely structured components such as catalyst layers, gas diffusion layers, electrodes, porous transport layers, and bipolar plates. This review provides a focused and critical summary of the current progress in applying 3D printing technologies to these key components.

View Article and Find Full Text PDF

Stable, treatment-resistant Cu complexes in practical wastewater are frequently neglected. Positively charged lysozyme amyloid fibrils (AF), however, exhibit unexplored potential for their adsorption. This study engineered an amyloid fibril-chitosan composite (AF-CS) xerogel and evaluated its adsorption performance in three systems: free Cu, Cu-Citrate binary, and Cu-EDTA binary.

View Article and Find Full Text PDF

Dopamine triacrylamide-crosslinked chitosan/polyacrylic acid cryogels for rapid and efficient adsorption of anionic dyes from wastewater.

Carbohydr Polym

November 2025

Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution Ocean University of China, Sanya 572024, China. Electronic address:

Developing three-dimensional composite materials with high adsorption capacity, environmentally friendliness, and facile processability is essential for removing organic dyes from wastewater and enhancing ecological protection. In this study, a Friedel-Crafts alkylation reaction was employed to introduce multiple double bonds into the benzene ring of dopamine hydrochloride monomer, resulting in dopamine triacrylamide (DAHAM) compounds. Dopamine triacrylamide crosslinked chitosan (CTS)/polyacrylic acid (PAA) cryogels (CTS/PAA@DAHAM) were prepared to achieve efficient and specific adsorption of anionic dyes.

View Article and Find Full Text PDF

Selective Catalysis-Mediated Interface to Stabilize Antimony Atom-Cluster Anode for Robust Potassium-Ion Batteries.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Physics and Electronics, Hunan Key Laboratory of Two-Dimensional Materials, Chongqing Research Institute, Hunan University, Changsha, 410082, P.R. China.

Controlling the electrode-electrolyte interfacial behavior is crucial for achieving a high-quality solid electrolyte interphase (SEI) and ensuring sustainable battery performance. Here, we propose a selective catalysis strategy to stabilize antimony atom-cluster (Sb) anode/electrolyte interface for robust potassium-ion batteries (PIBs). Specifically, the electrode featuring Sb in porous carbon (Sb/PC) as "electrocatalyst" unduly catalyzes the reduction of the dimethyl ether-based electrolyte, resulting in loose SEI layer and rapid capacity decay.

View Article and Find Full Text PDF

Biomimetic Dual Asymmetric MXene-Based Nanofluidics for Advancing Osmotic Power Generation.

J Am Chem Soc

September 2025

Key Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China.

Nanofluidics-based reverse electrodialysis offers a promising approach for harnessing the osmotic energy that exists between saline and fresh water, thereby providing a sustainable source of power. Nevertheless, the key obstacle to realizing a commercially viable power output stems from inadequate ion permselectivity in nanofluidics. Here, we engineer dual asymmetric MXene-based composite nanofluidics (DA-MXCNs) composed of a negatively charged, porous MXene layer and a positively charged, confined MXene layer, which strategically incorporates asymmetric channel dimensions and opposing charge distributions.

View Article and Find Full Text PDF