98%
921
2 minutes
20
Nicotinamide riboside (NR) acts as a nicotinamide adenine dinucleotide (NAD+) precursor where NR supplementation has previously been shown to be beneficial. Thus, we synthesized and characterized nicotinamide riboside tributyrate chloride (NRTBCl, water-soluble) and nicotinamide riboside trioleate chloride (NRTOCl, oil-soluble) as two new ester derivatives of nicotinamide riboside chloride (NRCl). NRCl and its derivatives were assessed in vivo, via intra-amniotic administration (), with the following treatment groups: (1) non-injected (control); and injection of (2) deionized HO (control); (3) NRCl (30 mg/mL dose); (4) NRTBCl (30 mg/mL dose); and (5) NRTOCl (30 mg/mL dose). Post-intervention, the effects on physiological markers associated with brush border membrane morphology, intestinal bacterial populations, and duodenal gene expression of key proteins were investigated. Although no significant changes were observed in average body weights, NRTBCl exposure increased average cecum weight. NR treatment significantly increased and NRCl treatment resulted in increased populations of , , and . Duodenal gene expression analysis revealed that NRCl, NRTBCl, and NRTOCl treatments upregulated the expression of ZnT1, MUC2, and IL6 compared to the controls, suggesting alterations in brush border membrane functionality. The administration of NRCl and its derivatives appears to trigger increased expression of brush border membrane digestive proteins, with added effects on the composition and function of cecal microbial populations. Additional research is now warranted to further elucidate the effects on inflammatory biomarkers and observe changes in the specific intestinal bacterial populations post introduction of NR and its derivatives.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9370700 | PMC |
http://dx.doi.org/10.3390/nu14153130 | DOI Listing |
Nat Aging
September 2025
Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway.
Beyond their classical functions as redox cofactors, recent fundamental and clinical research has expanded our understanding of the diverse roles of nicotinamide adenine dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) in signaling pathways, epigenetic regulation and energy homeostasis. Moreover, NAD and NADP influence numerous diseases as well as the processes of aging, and are emerging as targets for clinical intervention. Here, we summarize safety, bioavailability and efficacy data from NAD-related clinical trials, focusing on aging and neurodegenerative diseases.
View Article and Find Full Text PDFCell Metab
August 2025
Center for Clinical Research and Translational Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200092, China. Electronic address:
Inflammation and its metabolic-network interactions generate novel regulatory molecules with translational implications. Here, we identify the immunometabolic crosstalk that generates homocysitaconate, a metabolite formed by homocysteine and itaconate adduction catalyzed by S-adenosyl-L-homocysteine hydrolase (AHCY). Homocysitaconate increases 152-fold during inflammation and exhibits anti-inflammatory effects.
View Article and Find Full Text PDFBiotechnol Bioeng
August 2025
State Key Laboratory of Green Chemical Synthesis and Conversion, Zhejiang University of Technology, Hangzhou, P. R. China.
Nicotinamide riboside kinase (NRK) is an important enzyme in the nicotinamide riboside (NR) metabolic pathway, converting NR to nicotinamide mononucleotide (NMN), which has promising industrial applications. However, structural collapse in many NRKs reduces their activity and thermal stability, limiting their industrial potential. Herein, we developed an α-helix reconstruction method on a Kag-NRK from Kluyveromyces marxianus for restore its activity and stability together.
View Article and Find Full Text PDFSkelet Muscle
August 2025
Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
Background: Pathogenic variants in RYR1 cause a spectrum of rare congenital myopathies associated with intracellular calcium dysregulation. Glutathione redox imbalance has been reported in several Ryr1 disease model systems and clinical studies. NAD and NADP are essential cofactors in cellular metabolism and redox homeostasis.
View Article and Find Full Text PDFCardiomyocyte senescence, characterized by elevated cell cycle inhibitor expression, persistent DNA damage response, and mitochondrial dysfunction, contributes to myocardial stiffness and the progression of heart failure with preserved ejection fraction (HFpEF), the most common form of heart failure affecting individuals over 65. In this study, we investigated the role of NAD⁺ metabolism in cardiomyocyte senescence and cardiac function. Aged mice exhibited reduced cardiac NAD⁺ levels, impaired NAD⁺ biosynthesis and mobilization, and increased consumption, leading to suppressed SIRT1/6 activity and accumulation of senescent cardiomyocytes.
View Article and Find Full Text PDF