A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Efficient and Stable 3D/2D Perovskite Solar Cells through Vertical Heterostructures with (BA) AgBiBr Nanosheets. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Perovskite solar cells (PVSCs) have drawn great attention due to their high processability and superior photovoltaic properties. However, their further development is often hindered by severe nonradiative recombination at interfaces that decreases power conversion efficiency (PCE). To this end, a facile strategy to construct a 3D/2D vertical heterostructure to reduce the energy loss in PVSCs is developed. The heterostructure is contrived through the van der Waals integration of 2D perovskite ((BA) AgBiBr ) nanosheets onto the surface of 3D-FAPbI -based perovskites. The large bandgap of (BA) AgBiBr enables the formation of type-I heterojunction with 3D-FAPbI -based perovskites, which serves as a barrier to suppress the trap-assisted recombination at the interface. As a result, a satisfying PCE of 24.48% is achieved with an improved open-circuit voltage (V ) from 1.13 to 1.17 V. Moreover, the 2D perovskite nanosheets can effectively mitigate the iodide ion diffusion from perovskite to the metal electrode, hence enhancing the device stability. 3D/2D architectured devices retain ≈90% of their initial PCE under continuous illumination or heating after 1000 h, which are superior to 3D-based devices. This work provides an effective and controllable strategy to construct 3D/2D vertical heterostructure to simultaneously boost the efficiency and stability of PVSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202204661DOI Listing

Publication Analysis

Top Keywords

perovskite solar
8
solar cells
8
agbibr nanosheets
8
strategy construct
8
construct 3d/2d
8
3d/2d vertical
8
vertical heterostructure
8
3d-fapbi -based
8
-based perovskites
8
perovskite
5

Similar Publications