A G-quadruplex/hemin structure-undamaged method to inhibit peroxidase-mimic DNAzyme activity for biosensing development.

Anal Chim Acta

Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, 410004, PR China. Electronic address:

Published: August 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Damaging the structure of the G-quadruplex (G4) to prevent the formation of the G4/hemin complex is presently the only available method to inhibit the activity of the peroxidase-mimic DNAzyme. In this study, a unique intramolecular inhibitory effect of the adjacent base-pair (InE(N:N)), by installing a rationally adjacent base-pair of the G4 core sequence, is proposed for the inhibition of the DNAzyme activity, which eliminates the need to damage the entire G4 structure. Various base pairs show different abilities to inhibit DNAzyme activity. The adjacent adenine: thymine pair possesses the best inhibitory efficiency (17 times). Through detailed investigations of the InE(N:N), it was revealed that the adjacent adenine: thymine pair downregulated the formation of compound I in the catalytic process, thus inhibiting the G4 DNAzyme activity. The mechanism of inhibition indicated that the carbonyl group on the hexatomic ring of the complementary base played an important role. To further reflect the advantages of the proposed strategy, two InE(N:N)-based biosensors were developed for DNA analysis and Uracil-DNA glycosylase (UDG) detection. Compared with existing DNAzyme-based methods, the application of InE(N: N) facilitates the real-time assay and simplifies the design difficulty. Therefore, InE(N:N) provides new insights into the regulation of the DNAzyme activity and offers an efficient approach for the future application of DNAzyme.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2022.340143DOI Listing

Publication Analysis

Top Keywords

dnazyme activity
20
method inhibit
8
peroxidase-mimic dnazyme
8
adjacent base-pair
8
adjacent adenine
8
adenine thymine
8
thymine pair
8
dnazyme
7
activity
6
g-quadruplex/hemin structure-undamaged
4

Similar Publications

The malignant manifestation of breast cancer is driven by complex molecular alterations that extend beyond genetic mutations to include epigenetic dysregulation. Among these, DNA methylation is a critical and reversible epigenetic modification that significantly influences breast cancer initiation, progression, and therapeutic resistance. This process, mediated by DNA methyltransferases (DNMTs), involves the addition of methyl groups to cytosine residues within CpG dinucleotides, resulting in transcriptional repression of genes.

View Article and Find Full Text PDF

Background-Free Rolling Circle Amplification for SERS Bioassay Using a Chimeric Hairpin-Integrated CRISPR/Cas12a System.

Anal Chem

September 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Discipline of Intelligent Instrument and Equipment, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen University, Xiamen 361

Rolling circle amplification (RCA) has revolutionized nucleic acid detection owing to its isothermal simplicity. However, over two decades of clinical application have been hampered by off-target amplification and incompatibility with double-stranded DNA (dsDNA). Herein, a strategy, specifically cleavage of rationally designed DNA/RNA chimeric hairpin preprimer by dsDNA-targeted CRISPR/Cas12a to rlease ssRNA for initiating RCA (SCOPE-RCA), is proposed for nucleic acid identification of African swine fever virus (ASFV).

View Article and Find Full Text PDF

An electrochemical biosensor for detection of copper(II) based on FeO@Au magnetic nanoparticles and Cu-dependent DNAzyme assisted nicking endonuclease signal amplification.

Analyst

September 2025

Functional Nanomaterial-based Chemical and Biological Sensing Technology Innovation Team of Department of Education of Yunnan Province, Yunnan Minzu University, Kunming 650504, P. R. China.

Copper ions are essential elements in the human body and participate in various physiological activities in the bodies of organisms. Herein, an ultrasensitive electrochemical biosensor was developed for detection of copper ions (Cu) based on FeO@Au magnetic nanoparticles (FeO@Au MNPs) and a Cu-dependent DNAzyme assisted nicking endonuclease signal amplification (NESA) strategy. dsDNA is formed by a hybridization reaction between DNA S2 and S1 immobilized on the surface of FeO@Au MNPs.

View Article and Find Full Text PDF

Anaphase-promoting complex/cyclosome (APC/C) regulates the cell cycle by destruction of target proteins ubiquitination. However, understanding the control of APC/C has remained elusive. We identify APC2, the catalytic core subunit of APC/C, as a binding partner of active regulator of SIRT1 (AROS).

View Article and Find Full Text PDF

Self-phosphorylating DNAzyme DK1 enables programmable multi-analyte readout via PfAgo.

Biosens Bioelectron

September 2025

Department of Biological Sciences, Faculty of Science, National University of Singapore, 117543, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; Precision Medicine Translational Research Programme (TRP), Yong Loo Lin School

DNAzymes possessing kinase-like activities have long held theoretical promise, yet their practical implementation has remained significantly limited. Notably, DNAzyme kinase 1 (DK1), discovered over two decades ago, exhibits a unique self-phosphorylation capability upon encountering specific substrates like ATP, but its broad-based and programmable applications have not yet been fully realized. In this study, we innovatively couple DK1's autophosphorylation mechanism with the PfAgo to establish a novel programmable cascade sensing platform named RASTEN (Robust pfAgo-based Strategy for POC Testing Non-nucleic Acid and Nucleic Acid).

View Article and Find Full Text PDF