Gold nanoparticles application to the treatment of brain dysfunctions related to metabolic diseases: evidence from experimental studies.

Metab Brain Dis

Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.

Published: January 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nanotechnology is an emerging and expanding technology worldwide. The manipulation of materials on a nanometric scale generates new products with unique properties called nanomaterials. Due to its significant expansion, nanotechnology has been applied in several fields of study, including developing materials for biomedical applications, i.e., nanomedicine. The use of nanomaterials, including nanoparticles, in nanomedicine, is promising and has been associated with pharmacokinetics, bioavailability, and therapeutic advantages. In this regard, it is worth mentioning the Gold Nanoparticles (AuNPs). AuNPs' biomedical application is extensively investigated due to their high biocompatibility, simple preparation, catalytic, and redox properties. Experimental studies have pointed out critical therapeutic actions related to AuNPs in different pathophysiological contexts, mainly due to their anti-inflammatory and antioxidant effects. Thus, in this review, we will discuss the main experimental findings related to the therapeutic properties of AuNPs in metabolic, neurodegenerative diseases, and ultimately brain dysfunctions related to metabolic diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11011-022-00929-2DOI Listing

Publication Analysis

Top Keywords

gold nanoparticles
8
brain dysfunctions
8
dysfunctions metabolic
8
metabolic diseases
8
experimental studies
8
nanoparticles application
4
application treatment
4
treatment brain
4
diseases evidence
4
evidence experimental
4

Similar Publications

Rational Hapten Design for the Immunochromatographic Assay of Yohimbine, an Emerging Adulterant in Food.

J Agric Food Chem

September 2025

Guangdong Provincial Key Laboratory of Food Quality and Safety/Nation-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, South China Agricultural University, Guangzhou 510642, China.

Adulterated yohimbine (YHB) in food poses a risk to public health, making it imperative to develop fast and sensitive detection methods. In this study, computational-chemistry-based prediction was employed to design YHB haptens for generating the high-affinity monoclonal antibody Yohi-4A7, which exhibited an optimal half-inhibitory concentration (IC) of 1.69 ng/mL against YHB.

View Article and Find Full Text PDF

Electroactive bacteria (EAB) hold great promise for the development of electrochemical biosensors given their unique ability to transfer electrons extracellularly via specialized pathways, a process termed extracellular electron transfer (EET). Ongoing research aims to overcome current limitations and fully harness the potential of EABs for high-performance biosensing applications. Herein, we report the fabrication of an electrochemical microsensor based on biomineralized electroactive bacteria, specifically MR-1.

View Article and Find Full Text PDF

Background: Another approach to improve the dose conformity is to use charged particles like protons instead of the conventional X- and γ-rays. Protons exhibit a specific depth-dose distribution which allows to achieve a more targeted dose deposition and a significant sparing of healthy tissue behind the tumor. In particular, proton therapy has, therefore, become a routinely prescribed treatment for tumors located close to sensitive structures.

View Article and Find Full Text PDF

A novel phthalonitrile derivative (a) containing three functional groups (hexyl, aminated ester, phenoxy) was synthesized and subsequently cyclotetramerized in the presence of the corresponding metal chloride salts to obtain hexadeca-substituted metal {M = Cu(II) and Co(II)} phthalocyanines (b and c). The water-soluble phthalocyanines (d and e) were prepared by treating the newly synthesized complexes (b and c) with methyl iodide. Moreover, gold nanoparticles (1) and silver nanoparticles (2) were prepared, and their surfaces were modified with quaternary phthalocyanines (d and e).

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) has shown potential for early disease diagnosis via urinary metabolomics, but still faces challenges in achieving stable hot spots and processing complex clinical data. In this study, the preparation of chiral gold nanostars with precisely controllable branch size, number, and sharpness was realized by investigating the effects of l-GSH and CTA ( indicates halides) on site occupancy, reduction rate, and selective adsorption on crystal facets. Raman spectroscopic characterization using rhodamine 6G (R6G) as a reporter molecule revealed that nanoparticles with fewer branches, larger branch bases, and smoother surfaces exhibited excellent SERS activity, with an analytical enhancement factor (AEF) of 5.

View Article and Find Full Text PDF