98%
921
2 minutes
20
It is essential to consider the controllable microstructure of soft carbon and its enhancement effect on the electrochemical performance of silicon (Si) active materials. In this study, a series of Si@mesocarbon microbead (Si@MCMB) composites were prepared using mesophase pitch as the soft carbon source to coat nano-Si. The results showed that the ordered carbon layer stacking of soft carbon increased slightly with increasing heat treatment temperature in the range of 800-1400 °C. The Si@MCMB composites at higher temperature had a turbostratic carbon layer texture with rich porosity and smaller specific surface area, and had good cycle stability and high rate performance. These results highlighted that the co-existing structure of turbostratic carbon arrays with abundant porosity from soft carbon, provided the electron/ion transfer channels, underwent Si alloy volume change and enhanced the mechanical stability. Importantly, the relationship between the capacity retention rate of the Si@MCMB anodes and the microstructural characteristics (carbon layer and porosity) of soft carbon was established, which provided effective guidance for the design of high-performance silicon/carbon (Si/C) anode materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9295197 | PMC |
http://dx.doi.org/10.1039/d2ra01997c | DOI Listing |
Carbohydr Polym
November 2025
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, N
Hydrogel actuators show tremendous promise for applications in soft robots and artificial muscles. Nevertheless, developing a stretchable hydrogel actuator combining remote actuation and real-time signal feedback remains a challenge. Herein, a light-responsive hydrogel actuator with self-sensing function is fabricated by employing a localized immersion strategy to incorporate polyacrylamide (PAM) hydrogel network into semi-interpenetrating carbon nanotube/2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofiber/poly(N-isopropylacrylamide) (CNT/TOCN/PNIPAM) hydrogel.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China. Electronic address:
Aerogels are widely used in environmental remediation, but their application is hindered by brittleness, limited oil absorption and poor separation of viscous crude oil. In this study, a multifunctional superhydrophobic aerogel with electrothermal and photothermal effects was prepared from bacterial cellulose (BC), methyltrimethoxysilane (MTMS), and hydroxylated carbon nanotubes (HCNT) by soft-hard synergistic and directed freezing. The prepared aerogel exhibited an oriented layered porous structure with excellent compressibility and oil retention capacity.
View Article and Find Full Text PDFCarbohydr Polym
November 2025
Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T. 999077, Hong Kong. Electronic address:
The increasing global demand for food and the adverse environmental impacts of excessive agrochemical use highlights the urgent need for sustainable and scalable seed treatment technologies. This paper reports a novel photothermal seed coating (QC@SCCNTs) with high biocompatibility, exceptional photothermal efficiency, and notable reusability, serving as an effective alternative to conventional chemical treatments. The coating consists of sericin-functionalized carboxylated carbon nanotubes (SCCNTs) electrostatically complexed with quaternary ammonium chitosan (QC), forming a composite film (QS film).
View Article and Find Full Text PDFInorg Chem
September 2025
College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China.
The electrochemical reduction of CO into valuable C products presents a sustainable and efficient strategy for the utilization of CO and long-term renewable energy storage. Yet, enhancing the efficiency of the electrocatalytic CO reduction reaction (eCORR) in aqueous systems remains challenging due to the difficulty in activating both CO and HO molecules. In this study, we focus on water activation generating reactive hydrogen species (*H) to boost C product selectivity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
Coupling the ethanol electrooxidation reaction (EOR) with the hydrogen evolution reaction is an effective way to obtain green energy. Although Ni-based catalysts have the characteristics of low cost and good stability, meanwhile, the activity needs to be further improved. Here, we report a Ni-based heterojunction EOR catalyst, NiCo(OH)@NiS, composed by two phases of NiS and NiCo(OH).
View Article and Find Full Text PDF