Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We report here the direct hydrogenation of O gas to form hydrogen peroxide (HO) using a membrane reactor without H gas. Hydrogen is sourced from water, and the reactor is driven by electricity. Hydrogenation chemistry is achieved using a hydrogen-permeable Pd foil that separates an electrolysis chamber that generates reactive H atoms, from a hydrogenation chamber where H atoms react with O to form HO. Our results show that the concentration of HO can be increased ∼8 times (from 56.5 to 443 mg/L) by optimizing the ratio of methanol-to-water in the chemical chamber, and through catalyst design. We demonstrate that the concentration of HO is acutely sensitive to the HO decomposition rate. This decomposition rate can be minimized by using AuPd alloy catalysts instead of pure Pd. This study presents a new pathway to directly synthesize HO using water electrolysis without ever using H gas.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.2c03158DOI Listing

Publication Analysis

Top Keywords

decomposition rate
8
direct synthesis
4
gas
4
synthesis gas
4
gas report
4
report direct
4
direct hydrogenation
4
hydrogenation gas
4
gas form
4
form hydrogen
4

Similar Publications

This work elucidates the thermo-kinetics of the thermal conversion of cameroonian kaolin to metakaolin as the main product. The thermokinetical parameters (activation energy and pre-exponential factor ) for the kaolin conversion were calculated using model-free methods, the Kissinger-Akahira-Sunrose (KAS) and the Flynn-Wall-Ozawa (FWO) method, and differential methods (Kissinger and Ozawa) additionally including iterative procedures for KAS and FWO methods (KAS-Ir; FWO-Ir). The cameroonian kaolin was heat-treated using three different heating rates, 5, 20 and 40 K min, leading to metakaolin samples named MK-(5), MK-(20) and MK-(40).

View Article and Find Full Text PDF

To analyse the issues of high muzzle flame intensity and the easy migration of insensitive agents in conventional insensitive propellants, this study synthesizes modified nitrocellulose grafted with carboxymethyl potassium groups by a two-step process, starting from the molecular structure of nitrocellulose (NC), the principal component of propellants. First, the denitration reaction was performed to reduce part of the nitrate ester groups on the surface of NC to hydroxyl groups, followed by an etherification reaction to achieve directional grafting of carboxymethyl potassium groups. Compared with conventional flame retardant/insensitive systems based on nitrogen, phosphorus, or DBP (dibutyl phthalate), potassium-based functional groups exhibit superior thermal stability and environmental friendliness.

View Article and Find Full Text PDF

Hypoxia has been extensively studied as a stressor which pushes human bodily systems to responses and adaptations. Nevertheless, a few evidence exist onto constituent trains of motor unit action potential, despite recent advancements which allow to decompose surface electromyographic signals. This study aimed to investigate motor unit properties from noninvasive approaches during maximal isometric exercise in normobaric hypoxia.

View Article and Find Full Text PDF

Beech leaf disease (BLD) poses a serious threat to the health of beech forests throughout the northeastern USA and Canada. Caused by invasive nematodes, BLD first appeared in 2012 in Ohio and has rapidly spread eastward. We investigated the effects of BLD on leaf and litter chemistry and leaf litter decomposition rate from four infected beech stands in Falmouth, Massachusetts.

View Article and Find Full Text PDF

Formic acid (FA) has attracted significant interest as a renewable liquid-phase hydrogen carrier. Hydrogen generation from FA decomposition is essential for the development of hydrogen economy. Designing highly efficient catalysts with different coordination environments for FA dehydrogenation is crucial for fuel-cell applications.

View Article and Find Full Text PDF