98%
921
2 minutes
20
Leaf morphological traits vary systematically along climatic gradients. However, recent studies in plant functional ecology have mainly analysed quantitative traits, while numerical models of species distributions and vegetation function have focused on traits associated with resource acquisition; both ignore the wider functional significance of leaf morphology.A dataset comprising 22 leaf morphological traits for 662 woody species from 92 sites, representing all biomes present in China, was subjected to multivariate analysis in order to identify leading dimensions of trait covariation (correspondence analysis), quantify climatic and phylogenetic contributions (canonical correspondence analysis with variation partitioning) and characterise co-occurring trait syndromes (-means clustering) and their climatic preferences.Three axes accounted for >20% of trait variation in both evergreen and deciduous species. Moisture index, precipitation seasonality and growing-season temperature explained 8%-10% of trait variation; family 15%-32%. Microphyll or larger, mid- to dark green leaves with drip tips in wetter climates contrasted with nanophyll or smaller glaucous leaves without drip tips in drier climates. Thick, entire leaves in less seasonal climates contrasted with thin, marginal dissected, aromatic and involute/revolute leaves in more seasonal climates. Thick, involute, hairy leaves in colder climates contrasted with thin leaves with marked surface structures (surface patterning) in warmer climates. Distinctive trait clusters were linked to the driest and most seasonal climates, for example the clustering of picophyll, fleshy and succulent leaves in the driest climates and leptophyll, linear, dissected, revolute or involute and aromatic leaves in regions with highly seasonal rainfall. Several trait clusters co-occurred in wetter climates, including clusters characterised by microphyll, moderately thick, patent and entire leaves or notophyll, waxy, dark green leaves. . The plastic response of size, shape, colour and other leaf morphological traits to climate is muted, thus their apparent shift along climate gradients reflects plant adaptations to environment at a community level as determined by species replacement. Information on leaf morphological traits, widely available in floras, could be used to strengthen predictive models of species distribution and vegetation function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9313568 | PMC |
http://dx.doi.org/10.1111/1365-2745.13873 | DOI Listing |
Mycobiology
September 2025
Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea.
The main objective of the present study is to compile and comprehensively reevaluate all known records of in order to establish a standardized framework for the accurate characterization and identification of this species. Nine isolates of obtained from and from various regions of Korea were analyzed. The morphological features of the fungus and isolated colonies were described and illustrated.
View Article and Find Full Text PDFPlant Physiol Biochem
September 2025
Joint FAFU-Dalhousie Lab, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Comprehensive Utilization of Crops, Fuzhou, 350002, China.
Melon, a globally important horticultural crop, faces increasing continuous cropping obstacles (CCOs) due to cultivation intensification, with autotoxicity being a primary cause. Autotoxin accumulation severely impacts plant growth, reducing yield and quality. Exogenous silicon (Si) plays an important role in improving plant stress adaptation and is an environmentally friendly element with broad application prospects.
View Article and Find Full Text PDFBackground And Aims: Trait-based approaches have advanced our understanding of plant strategies, yet they often focus on leaf-level traits, overlooking the functional roles of stem anatomy and twig characteristics. We investigated intraspecific trait variation in Salix flabellaris, an alpine dwarf shrub, along climatic gradients in the Himalayas. Our goal was to identify distinct axes of trait variation related to stem, twig, and leaf traits, assess their environmental drivers, and evaluate population-specific growth responses to recent climate change.
View Article and Find Full Text PDFFood Res Int
November 2025
SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034, China. Electronic address:
Fungal toxin contamination presents significant hazards to agroecosystems and food safety. Penicillium expansum (P. expansum) emerges as a primary threat, damaging sweet cherries through spoilage and generating the hazardous mycotoxin patulin (PAT).
View Article and Find Full Text PDFZhonghua Bing Li Xue Za Zhi
September 2025
Department of Pathology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.
To investigate the clinicopathological features of SMARCA4-deficient uterine sarcoma. Five cases of SMARCA4-deficient uterine sarcoma at the Department of Pathology, the First Affiliated Hospital of Nanjing Medical University from 2018 to 2024 were collected. The morphological and immunohistochemical features were observed and analyzed.
View Article and Find Full Text PDF