98%
921
2 minutes
20
We present a multiconfigurational methodology based on non-orthogonal fragments for the calculation of crystal field energy levels and magnetic properties of lanthanide complexes, implementing a systematic description of non-covalent contributions to metal-ligand bonding. The approach consists of two steps. In the first step, appropriate wave functions for the various ionic fragments (lanthanide ions and coordinating ligands) are optimized separately, accounting for the influence of the surrounding environment within various approximations. In the second and final step, the scalar relativistic (DKH2) electrostatic Hamiltonian of the whole molecule is represented on the basis of the optimized metal-ligand multiconfigurational non-orthogonal group functions (MC-NOGFs), and reduced to an effective (2 + 1)-dimensional non-orthogonal configuration interaction (CI) problem Löwdin-partitioning. Within the proposed formalism, the projected non-orthogonal CI Hamiltonian can be expanded to any desired order of perturbation theory in the fragment-localised excitations out of the degenerate space, and its eigenvalues and eigenfunctions provide systematic approximations to the crystal field energies and wave functions. We present here a preliminary implementation of the proposed MC-NOGF method developed for first-order degenerate perturbation theory within our own code CERES, and compare its performance both with the simpler non-covalent orthogonal approach, Fragment Model Potential (FAIMP) approximation, and the full CAHF/CASCI-SO method, accounting for metal-ligand covalency in a mean-field manner. We found that the energies and magnetic properties of 44 complexes obtained an iteratively optimized version of our MC-NOGF first-order non-covalent method compare remarkably well with those obtained using the full CAHF/CASCI-SO method including metal-ligand covalency, thus exposing the predominantly electrostatic character of the metal-ligand interactions, and are superior to those obtained using the FAIMP approach, which in its iteratively optimised variant was believed to date to be the best description of non-covalent metal-ligand interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1cp05488k | DOI Listing |
Langmuir
September 2025
Federal University of São Paulo, Laboratory of Hybrid Materials, Diadema, São Paulo 09913-030, Brazil.
This study demonstrates the successful fabrication of nanostructured Langmuir-Blodgett (LB) films combining the conjugated copolymer poly(9,9-dioctylfluorene--3,4-ethylenedioxythiophene) (PDOF--PEDOT) with spherical and triangular silver nanoparticles (AgNP). The LB technique allowed precise control over the molecular arrangement and distribution of the nanoparticles at the air-water interface, resulting in compact, reproducible and structurally ordered nanocomposite films. The structural and morphological properties of the interfacial monolayers and LB films were investigated using surface pressure-area isotherms, Brewster angle microscopy, polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and quartz crystal microbalance.
View Article and Find Full Text PDFNano Lett
September 2025
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei 430070, China.
Aqueous zinc-ion batteries (AZIBs) represent an environmentally benign energy storage alternative. However, the VO cathode suffers from limited cycling stability and rate capability due to structural instability, vanadium dissolution, and high desolvation energy caused by the large size of [Zn(HO)] deintercalation. Address these issues, we introduce a VO/VOPO (VOP) heterostructure that that reinforces the crystal structure to suppress vanadium dissolution and establishes a hydrophilic interface reducing the desolvation energy of Zn.
View Article and Find Full Text PDFNano Lett
September 2025
Donostia International Physics Center (DIPC), Donostia-San Sebastián 20018, Spain.
Anisotropic van der Waals crystals have gained significant attention in nano-optics and optoelectronics due to their unconventional optical properties, including anomalous reflection, canalization, and nanofocusing. Polaritons─light coupled to matter excitations─govern these effects, with their complex wavevector encoding key parameters such as wavelength, lifetime, field confinement, and propagation direction. However, determining the complex wavevector, particularly the misalignment between its real and imaginary parts, has remained a challenge due to the complexity of the dispersion relation.
View Article and Find Full Text PDFAdv Mater
September 2025
School of Materials Science and Engineering, Anhui University, Hefei, 230601, China.
Modulating the electronic structure of catalysts to maximize their power holds the key to address the challenges faced by zinc-iodine batteries (ZIBs), including the shuttle effect and slow redox kinetics at the iodine cathode. Herein, oxygen vacancies is innovatively introduced into CoO lattice to create high-spin-state Co active sites in nonstoichiometric CoO nanocrystals supported by carbon nanofibers (H-CoO/CNFs). This simple strategy intensifies crystal field splitting of Co 3d orbitals, optimizing the spin-orbital coupling between Co 3d orbitals and iodine species.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
Department Chemie- und Bioingenieurwesen, Lehrstuhl für Chemische Reaktionstechnik (CRT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstr. 3, 91058, Erlangen, Germany.
The supported catalytically active liquid metal solution (SCALMS) concept is based on catalytically active metals dissolved in a low-melting-point liquid metal matrix. These solid alloy particles, deposited over a high area support, transform into a liquid alloy under reaction conditions. In this work, GaPt SCALMS materials of varying composition are investigated and focus on the change in the alloy composition during preheating, the actual high temperature propane dehydrogenation at 823 K, and after cool-down.
View Article and Find Full Text PDF