98%
921
2 minutes
20
Objective: To investigate the expression of glutathione peroxidase 2 (GPX2) in human lung adenocarcinoma tissues and its effect on the biological function of lung adenocarcinoma A549 cells.
Methods: The expression of GPX2 in lung adenocarcinoma and its effect on survival were analyzed by the TCGA database and the GEPIA 2 database. A total of 45 cases of primary lung adenocarcinoma tissue specimens and 45 cases of their paracancerous tissue specimens were collected, and the expression of GPX2 in the two types of tissues was detected by immunohistochemistry. Lung adenocarcinoma A549 cells were divided into the GPX2 overexpression group (GPX2), the GPX2 knockdown group (si-GPX2), the empty vector group (Vector), the siRNA negative control group (si-NC), and the WT group; the mRNA level and protein expression of GPX2 in each group of A549 cells were detected by real-time fluorescence quantitative PCR and Western blotting; the proliferation activity of each group of cells was detected by the CCK-8 assay; the effect of GPX2 on cell migration and invasion ability was detected by the scratch assay and the Transwell invasion assay; the apoptosis of each group of cells was detected by flow cytometry; Western blotting was performed to detect the expression levels of Bax, Bcl-2, E-cadherin, vimentin, and MMP2 and MMP9 proteins in each group of cells.
Results: Bioinformatics analysis showed that the expression of GPX2 was strongly correlated with the prognosis of lung adenocarcinoma patients ( < 0.01). The positive expression rates of GPX2 in lung adenocarcinoma and its paracancerous tissues were 66.0% and 15.7%, respectively ( < 0.05). The results of RT-qPCR and Western blotting showed that the expression level of GPX2 mRNA and protein in A549 cells in the GPX2 group increased, which was significantly higher than that in the WT group ( < 0.05); the expression levels of GPX2 mRNA and protein in A549 cells in the si-GPX2 group were the same, that is, significantly lower than the WT group ( < 0.05). GPX2 overexpression promoted the proliferation, migration, and invasion of A549 cells and inhibited their apoptosis; the results in the si-GPX2 group were opposite to those in the GPX2 group. Compared with the WT group, the expression of Bcl-2, vimentin, and MMP2 and MMP9 protein in the GPX2 group increased ( < 0.05), while the expression of Bax and E-cadherin protein decreased in the GPX2 group ( < 0.05); the results in the si-GPX2 group were opposite to those in the GPX2 group.
Conclusion: The expression of GPX2 in lung adenocarcinoma is related to the prognosis of patients. It is proved that GPX2 can promote the migration and invasion of lung adenocarcinoma cells and is related to the EMT/-catenin pathway. Thus, GPX2 is expected to be an important target for the diagnosis and treatment of lung adenocarcinoma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9313920 | PMC |
http://dx.doi.org/10.1155/2022/7379157 | DOI Listing |
Br J Cancer
September 2025
Department of Genetics, Institut Curie, PSL Research University, Paris, France.
Background: Identifying molecular alterations specific to advanced lung adenocarcinomas could provide insights into tumour progression and dissemination mechanisms.
Method: We analysed tumour samples, either from locoregional lesions or distant metastases, from patients with advanced lung adenocarcinoma from the SAFIR02-Lung trial by targeted sequencing of 45 cancer genes and comparative genomic hybridisation array and compared them to early tumours samples from The Cancer Genome Atlas.
Results: Differences in copy-number alterations frequencies suggest the involvement in tumour progression of LAMB3, TNN/KIAA0040/TNR, KRAS, DAB2, MYC, EPHA3 and VIPR2, and in metastatic dissemination of AREG, ZNF503, PAX8, MMP13, JAM3, and MTURN.
Cancer Sci
September 2025
Section of Oncopathology and Morphological Pathology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
Low-density lipoprotein receptor-related protein 11 (LRP11) is reported to be overexpressed in various cancers; however, its functional role in lung adenocarcinoma remains poorly understood. This study aimed to elucidate the tumor-promoting function of LRP11 in lung adenocarcinoma. We assessed the expression and function of LRP11 in lung adenocarcinoma cell lines through both silencing and overexpression experiments.
View Article and Find Full Text PDFBMJ Open
September 2025
Department of Epidemiology, School of Public Health, and Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
Objectives: Although lung cancer in never smokers (LCNSs) accounts for an estimated 25% of all lung cancer cases, the temporal trends in LCNS incidence and its broader epidemiological patterns remain poorly understood. Our study examines the temporal trends in LCNS incidence and analyses key epidemiological characteristics, specifically, the trends in mortality rates, survival rates and changes in age at onset to illuminate the reasons for temporal trends in LCNS incidence.
Design: Retrospective population-based cohort study.
J Thorac Oncol
September 2025
Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Emeritus Professor, Seoul National University College of Medicine, Seoul, Republic of Korea.
Introduction: Multifocal subsolid nodules (SSNs) are increasingly detected with widespread lung cancer screening and advanced thoracic imaging, representing a spectrum of multifocal lung adenocarcinomas (LUADs). When synchronous SSNs coexist with a surgically confirmed subsolid LUAD, their trajectories remain poorly understood, contributing to uncertainty regarding optimal management strategies. This study aimed to evaluate the clinical course and impact of synchronous SSNs in such patients and to identify features associated with their progression.
View Article and Find Full Text PDFDev Cell
September 2025
Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Faculty of Medical Laborat
Cytokines link inflammation to tumorigenesis, but the role of post-translational modifications in regulating their function within the extra-tumoral environment remains poorly defined. Here, we identify tumor-derived tumor necrosis factor (TNF) receptor superfamily member 11B (TR11B) as a key driver of lung adenocarcinoma (LUAD) progression and therapeutic resistance. Mechanistically, O-GlcNAc transferase (OGT)-mediated O-GlcNAcylation at serine 151 stabilizes TR11B and facilitates its interaction with the membrane protein EPS15 homology domain-containing protein 1 (EHD1), promoting cyclin dependent kinase 2 (CDK2) phosphorylation and cell cycle progression.
View Article and Find Full Text PDF