98%
921
2 minutes
20
A large number of drainage pipes and canals in China have been in disrepair for a long time and there have been problems such as leakage and corrosion. In response to these problems, this paper studies a non-excavation technology for repairing the arched canal structure-the in-situ spraying method. To study the influence of the original canal structure on the mechanical characteristics of the lining structure by in-situ spraying and the restraint effect on the lining structure, a field model test with a similar ratio of 1:2 was conducted in the field test pit. By conducting four stages of three-point concentrated load loading tests, the mechanical characteristics of the lining structure were investigated to reveal the influence of the canal structure on the force of the lining structure. The test results show that: the maximum crack width of the newly added lining structure is 0.27 mm and the normal service ultimate bearing capacity of the arched structure repaired by H-70 reaches 150 kN; comparing the loading test and the numerical simulation results, the difference between the two vault displacement results is 4.65% and the results are relatively consistent. The displacement of the bottom of the lining structure is small and the participation of the bottom plate is small, while the displacement of the upper arch structure of the lining is significantly larger than the lateral displacement, indicating that the canal structure can effectively limit the lateral displacement of the newly added lining and that the canal structure is greatly reduced. The bending moment of the lining structure is improved and the restraint effect on the arch foot is more obvious. This paper proposes the use of H-70 to repair arched canal structures by the in-situ spraying method and seeks to prove the feasibility of this method and fill the gap of research in this area. This paper provides the structural design basis and experimental knowledge for the construction of the repair method, which has important practical significance for the pipeline repair project in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325118 | PMC |
http://dx.doi.org/10.3390/polym14142781 | DOI Listing |
Front Digit Health
August 2025
FEN - Graduate School in Engineering, State University of Rio de Janeiro (UERJ), Rio de Janeiro, Brazil.
Background: This paper presents the application of simulation to assess the functionality of a proposed Digital Twin (DT) architecture for immunisation services in primary healthcare centres. The solution is based on Industry 4.0 concepts and technologies, such as IoT, machine learning, and cloud computing, and adheres to the ISO 23247 standard.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
The Institute of Precision Machinery and Smart Structure, College of Engineering, Zhejiang Normal University, Jinhua, Zhejiang 321004, China.
Flexible sensors integrating motion detection and tactile perception capabilities demonstrate significant potential in aerospace biomechanics and medical rehabilitation. Here, we report a biomimetic inflatable chamber sensor that synergistically integrates pneumatic-auxiliary and electronic sensing for elbow joint health monitoring. The device architecture combines multiwalled carbon nanotube-reinforced silicone composites with embedded electrode arrays integrated within the inner lining of inflatable chambers, achieving high sensitivity while maintaining signal stability under electromagnetic interference.
View Article and Find Full Text PDFSci Rep
September 2025
Yunnan Provincial Transportation Planning and Design Research Institute Co., Ltd, Kunming, 650041, China.
Due to the high construction efficiency and low cost, double-arch tunnels without middle drift has been gradually promoted in engineering in recent years. However, the excavation characteristics of the left and right tunnels are easy to cause structural disturbance and deformation out of control. In particular, the surrounding rock disturbance of the front tunnel caused by the construction of the secondary tunnel often leads to lining cracking and structural instability.
View Article and Find Full Text PDFData Brief
October 2025
Department of Civil Engineering, University of Science and Technology Beijing, Beijing 100083, China.
The maintenance of metro tunnel support structures is crucial for ensuring the safe and efficient operation of urban rail transit. Under complex stress conditions (including tension, compression, shear, torsion), metro tunnel linings are susceptible to various forms of damage, such as cracking, spalling, segment misalignment, and water leakage. These issues pose substantial challenges to tunnel safety and service life.
View Article and Find Full Text PDFUltrastruct Pathol
September 2025
Department of Microbiology and Immunology, Northeast Ohio Medical University, Rootstown, OH, USA.
Efficient transcriptional activation and replication of the human immunodeficiency virus (HIV-1) is dependent on Tat protein. Initial observations have shown that human leukemia T lymphocytes (Jurkat cells aka Wild type or WT) transfected with plasmid as Control (CTJ) cells, and CTJ transfected by electroporation with (TJ cells) showed growth and maintenance resulting in giant and small cells with accumulated corpses. The lack of fine structure in Jurkat cells and both transfected cells aimed at us to verify their respective ultrastructure modifications.
View Article and Find Full Text PDF