98%
921
2 minutes
20
In the present study, the PLC characteristic parameters and DSA mechanism of Al-(2.86~9.41) Mg alloy sheets were investigated during tensile testing at room temperature with a tensile rate of 1 × 10 s. On the basis of the solution Mg concentrations in the α-Al matrix, the initial vacancy concentration, the second-phase particle configuration and the recrystallized grain configuration are almost the same by quenching treatment. The results show that the type of room-temperature tensile stress-strain curves of quenched Al-(2.86~9.41) Mg alloy sheets varied according to the Mg content. The type of stress-strain curve of the Al-2.86 Mg alloy sheet was B + C, while the type of stress-strain curve of the Al-(4.23~9.41) Mg alloy sheets was C. When the quenched Al-(2.86~9.41) Mg alloy sheets were stretched at room temperature, the strain cycle of the rectangular waves corresponding to the high stress flow ΔεTmax and stress drop amplitude Δσ on the zigzag stress-strain curve of alloy sheets increased with increasing the Mg content. Moreover, the strain cycle of ΔεTmax and Δσ on the stress-strain curve of alloy sheets increased gradually with increasing tensile deformation. The yield stress of quenched Al-(2.86~9.41) Mg alloy sheets increased gradually with increasing the Mg content. Moreover, the critical strain corresponding to yield stress εσ and the critical strain corresponding to the occurrence of the PLC shearing band εc of alloy sheets both increased with increasing the Mg content. However, the difference in flow strain value Δεc-σ between εc and εσ of alloy sheets decreased gradually with increasing the Mg content.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9322177 | PMC |
http://dx.doi.org/10.3390/ma15144965 | DOI Listing |
Mikrochim Acta
September 2025
Affordable and Sustainable Sample Preparation (AS2P) Research Group, Departamento de Química Analítica, Instituto Químico para la Energía y el Medioambiente IQUEMA, Universidad de Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, E-14071, Córdoba, Spain.
Stainless-steel substrates have grown in importance in the development of planar sorptive phases. However, the reduced wettability of polished sheets makes difficult their functionalization. This limitation can be solved by using amorphous silica gel microparticles as superficial guides.
View Article and Find Full Text PDFMaterials (Basel)
July 2025
Department of Mechanical Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi 441-8580, Japan.
Initially, the effects of sheet combinations for joining two sheets, including 780 MPa steel and A5052 aluminum alloy sheets, on the joined cross-sectional shapes of the sheets in a clinch-bonding process and the tension-shear load of joined sheets were investigated. The effect of an adhesive on the amounts of the interlock and the minimum thickness in the upper sheet was not large, whereas the effect of the sheet combination was observed. Subsequently, for joining the upper 980 MPa ultra-high-strength steel and lower aluminum alloy sheets in the clinch-bonding process, the effects of the die shape, punch velocity, and sheet holding force on the joinability were investigated.
View Article and Find Full Text PDFMaterials (Basel)
July 2025
Industrial Engineering Department, University of Rome "Tor Vergata", 00133 Rome, Italy.
Growing environmental concerns have driven increased interest in solid-state thermal technologies based on the elastocaloric properties of shape memory alloys (SMA). This work examines the elastocaloric effect (eCE) in Ni-Ti SMA sheets subjected to cyclic bending, providing quantitative thermal characterization of their behavior under controlled loading conditions. The experimental investigation employed passive thermography to analyze the thermal response of Ni-Ti sheets under two deflection configurations at 1800 rpm loading.
View Article and Find Full Text PDFSmall
August 2025
Department of Physics, University of South Florida, Tampa, FL, 33620, USA.
Interfacing topological insulators (TI) with magnetic materials enables accessing quantum effects for advanced devices. The synthesis of such heterostructures faces challenges due to interlaying mixing and the often-complex multicomponent materials required to combine the desired properties. An alternative synthesis to direct growth is the modification of 2D materials by topotactic reactions to introduce new functionalities into pre-formed single or few-component 2D sheets.
View Article and Find Full Text PDFActa Biomater
August 2025
National Key Laboratory of Automotive Chassis Integration and Bionics/School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, China; Chongqing Research Institute of
Zinc‑, iron‑, and magnesium‑based biodegradable metals suffer inherent limitations as bioresorbable scaffold materials, including inappropriate degradation rates and insufficient mechanical strength. Pure molybdenum (Mo) has been proposed as an alternative, but its clinical application is hampered by brittleness and potential nephrotoxicity. A Mo alloy was engineered to address these challenges.
View Article and Find Full Text PDF