Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Alternative splicing is pervasive in mammalian genomes and involved in embryo development, whereas research on crosstalk of alternative splicing and embryo development was largely restricted to mouse and human and the alternative splicing regulation during embryogenesis in zebrafish remained unclear. We constructed the alternative splicing atlas at 18 time-course stages covering maternal-to-zygotic transition, gastrulation, somitogenesis, pharyngula stages, and post-fertilization in zebrafish. The differential alternative splicing events between different developmental stages were detected. The results indicated that abundance alternative splicing and differential alternative splicing events are dynamically changed and remarkably abundant during the maternal-to-zygotic transition process. Based on gene expression profiles, we found splicing factors are expressed with specificity of developmental stage and largely expressed during the maternal-to-zygotic transition process. The better performance of cluster analysis was achieved based on the inclusion level of alternative splicing. The biological function analysis uncovered the important roles of alternative splicing during embryogenesis. The identification of isoform switches of alternative splicing provided a new insight into mining the regulated mechanism of transcript isoforms, which always is hidden by gene expression. In conclusion, we inferred that alternative splicing activation is synchronized with zygotic genome activation and discovered that alternative splicing is coupled with transcription during embryo development in zebrafish. We also unveiled that the temporal expression dynamics of splicing factors during embryo development, especially co-orthologous splicing factors. Furthermore, we proposed that the inclusion level of alternative splicing events can be employed for cluster analysis as a novel parameter. This work will provide a deeper insight into the regulation of alternative splicing during embryogenesis in zebrafish.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9304896 | PMC |
http://dx.doi.org/10.3389/fcell.2022.879795 | DOI Listing |