98%
921
2 minutes
20
Cells often adopt different phenotypes, dictated by tissue-specific or local signals such as cell-cell and cell-matrix contacts or molecular micro-environment. This holds in extremis for macrophages with their high phenotypic plasticity. Their broad range of functions, some even opposing, reflects their heterogeneity, and a multitude of subsets has been described in different tissues and diseases. Such micro-environmental imprint cannot be adequately studied by single-cell applications, as cells are detached from their context, while histology-based assessment lacks the phenotypic depth due to limitations in marker combination. Here, we present a novel, integrative approach in which 15-color multispectral imaging allows comprehensive cell classification based on multi-marker expression patterns, followed by downstream analysis pipelines to link their phenotypes to contextual, micro-environmental cues, such as their cellular ("community") and metabolic ("local lipidome") niches in complex tissue. The power of this approach is illustrated for myeloid subsets and associated lipid signatures in murine atherosclerotic plaque.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmet.2022.06.012 | DOI Listing |
Br J Haematol
September 2025
Department of Internal Medicine, National Taiwan University Cancer Center, Taipei, Taiwan.
Pulmonary chronic graft-versus-host disease (cGVHD), particularly bronchiolitis obliterans syndrome (BOS), is a severe complication of allogeneic haematopoietic stem cell transplantation (allo-HSCT) with significant morbidity and mortality. This report, developed collaboratively by experts from the Taiwan Society of Blood and Marrow Transplantation (TBMT) and the Taiwan Society of Pulmonary and Critical Care Medicine (TSPCCM), provides consensus statements for the diagnosis, surveillance and management of pulmonary cGVHD. Early detection through pulmonary function tests (PFTs) is critical, with serial monitoring recommended after allo-HSCT.
View Article and Find Full Text PDFVirology
September 2025
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China. Electronic address:
Colloidal gold technology has revolutionized viral diagnostics through its rapid, cost-effective, and user-friendly applications, particularly in point-of-care testing (POCT). This review synthesizes recent advancements, focusing on its role in detecting respiratory viruses, hepatitis viruses, and emerging pathogens. The technology leverages the unique optical and physicochemical properties of gold nanoparticles (AuNPs), including localized surface plasmon resonance (LSPR) and high surface-to-volume ratios, to achieve rapid antigen-antibody recognition with visual readouts within 15 min.
View Article and Find Full Text PDFAnal Chem
September 2025
Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
Membrane receptor recognition is a specific biotargeting strategy for disease diagnosis and treatment, but it suffers from insufficient receptor expression levels. Hydrophobic interaction-based membrane anchoring strategy allows high anchoring density, but it lacks specificity. In this study, we present a DNA nanocage-based artificial receptor generator (DNARG) that combines the advantages of high specificity of receptor recognition and high density of hydrophobic membrane anchoring.
View Article and Find Full Text PDFBiotechnol Bioeng
September 2025
MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China.
Plasmids are commonly employed in the delivery of clustered regularly interspaced shortpalindromic repeats (CRISPR)/CRISPR-associated (Cas) components for genome editing. However, the absence of heritable plasmids in numerous organisms limits the development of CRISPR/Cas genome editing tools. Moreover, cumbersome procedures for plasmid construction and curing render genome editing time-consuming.
View Article and Find Full Text PDFJ Appl Microbiol
September 2025
Graduate Institute of Medical Sciences, National Defense Medical University, Taipei City 114201, Taiwan (R.O.C.).
Aims: This study aims to develop and evaluate a rapid and high-multiplex pathogen detection method for clinical and food specimens to address the ongoing public health threat of foodborne infections and the limitations of conventional culture-based diagnostics.
Methods And Results: The foodborne bacteria (FBB) assay integrates multiplex PCR, T7 exonuclease hydrolysis, and a suspension bead array to simultaneously detect 16 genes from 13 major foodborne bacteria. Analytical performance was evaluated using reference strains, while diagnostic performance was assessed using clinical and food samples.