Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Intestinal parasitic infections can change gut microbiota and short-chain fatty acids (SCFAs). We aimed to study the interaction among , human gut microbiota, and serum SCFAs in a community. Fifty-two subjects in Donchang sub-district, Khon Kaen Province, northeastern Thailand, were included based on specific inclusion and exclusion criteria. Characteristics of the participants were matched between those positive for infection alone (no other intestinal parasites; Ss+, n=26) and uninfected controls (infection status confirmed by polymerase chain reaction (PCR); Ss-, n=26). Serum short-chain fatty acids were evaluated by gas chromatography-mass spectrometry. DNA was extracted from individual faecal samples and then pooled into two groups (Ss+ and Ss-) for amplification and sequencing of the V3-V4 region of the 16S gene with next-generation technology. We explored the impact of infection with on the faecal microbiota: individuals infected with this parasite exhibited increased alpha diversity of bacteria. At the genus level, gut microbiota in Ss+ patients showed high abundances of and but low abundances of the genera and PCR of individual samples to identify certain species of interest gave results consistent with those from next-generation sequencing of pooled samples and showed that significantly more Ss+ samples contained . Intriguingly, a major SCFA, acetic acid, was significantly decreased in infection. In conclusion, infection caused an imbalance of gut microbiota and decreased acetic acid in serum. This information adds to the knowledge concerning the effect of intestinal nematode-related chronic diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9246423PMC
http://dx.doi.org/10.12938/bmfh.2021-054DOI Listing

Publication Analysis

Top Keywords

gut microbiota
20
short-chain fatty
12
fatty acids
12
microbiota short-chain
8
acetic acid
8
microbiota
6
infection
5
investigation gut
4
acids -infected
4
-infected patients
4

Similar Publications

Oligochitosan-Ameliorated Gut Microbiome and Metabolic Homeostasis in Hybrid Groupers (Epinephelus lanceolatu ♂ × Epinephelus fuscoguttatus ♀) Infected With Vibrio harveyi.

J Fish Dis

September 2025

Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong

Vibrio infections cause enteritis in grouper fish, leading to high mortality and stunted growth, which is a major challenge for aquaculture. Oligochitosans, marine prebiotics with bioactive properties, have proven their potential for growth promotion and immune regulation. However, the impacts of Vibrio harveyi on the gut microbiome of grouper fish and the potential of oligochitosans to modulate these effects remain poorly understood.

View Article and Find Full Text PDF

Effects of metformin on gut microbiota and short/mediumchain fatty acids in highfat diet rats.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

May 2025

Department of Laboratory Animal Science, Xiangya School of Medicine, Central South University, Changsha 410013, China.

Objectives: Recent evidence suggests that the gut may be a primary site of metformin action. However, studies on the effects of metformin on gut microbiota remain limited, and its impact on gut microbial metabolites such as short-/medium-chain fatty acids is unclear. This study aims to investigate the effects of metformin on gut microbiota, short-/medium-chain fatty acids, and associated metabolic benefits in high-fat diet rats.

View Article and Find Full Text PDF

Kefir grains offer numerous health benefits, including boosting the immune system, alleviating digestive issues, and enhancing antimicrobial activity. They are rich in beneficial probiotic bacteria that promote gut health and support a balanced intestinal microbiota. "Beta-lactoglobulin (β-lg), a well-known milk protein," is used to create nanofibril structures that can serve as scaffolds.

View Article and Find Full Text PDF

Background: The gut microbiota plays a vital role in various physiological processes, including metabolism. Fecal microbiota transplantation (FMT) involves transferring fecal matter from a healthy donor to rebalance a patient's intestinal dysbiosis. The impact of FMT on metabolic syndrome (MetS) is subject to debate.

View Article and Find Full Text PDF

Atherosclerosis (AS) is increasingly recognized as a disease influenced not only by lipid metabolism and inflammation but also by the gut microbiota and their bioactive metabolites. Isoquercitrin (ISO), a natural flavonoid with food-medicine homology, has shown promising antiatherosclerotic potential, yet its underlying mechanisms remain unclear. In this study, ISO administration significantly reduced plaque burden, improved lipid profiles, and restored gut microbial balance by enriching beneficial taxa, such as , , and .

View Article and Find Full Text PDF