98%
921
2 minutes
20
Unlabelled: The ultimate mechanical properties of MgSiO orthoenstatite (OEN), as characterized here by the ideal strengths, have been calculated under tensile and shear loadings using first-principles calculations. Both ideal tensile strength (ITS) and shear strength (ISS) are computed by applying homogeneous strain increments along high-symmetry directions ([100], [010], and [001]) and low index shear planes ((100), (010), and (001)) of the orthorhombic lattice. We show that the ultimate mechanical properties of OEN are highly anisotropic during tensile loading, with ITS ranging from 4.5 GPa along [001] to 8.7 GPa along [100], and quite isotropic during the shear loading with ISS ranging from 7.4 to 8.9 GPa. During tensile test along [100] and [001], a modified structure close to OEN has been found. This modified structure is more stable than OEN under stress (or strain). We have characterized its elastic and ultimate properties under tensile loading. With ITS ranging from 7.6 GPa along [010] to 25.6 GPa along [001], this modified structure appears to be very anisotropic with exceptional strength along [001].
Supplementary Information: The online version contains supplementary material available at 10.1007/s00269-022-01206-5.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9276559 | PMC |
http://dx.doi.org/10.1007/s00269-022-01206-5 | DOI Listing |
Front Bioeng Biotechnol
August 2025
The Third Department of Orthopedic Surgery, Fuxin Mining General Hospital of Liaoning Health Industry Group, Liaoning, China.
Tendon/ligament (T/L) injuries sustained during motion are highly prevalent and severely impact athletes' careers and quality of life. Current treatments, including autografts, allografts, and synthetic ligaments, have limitations such as donor site morbidity, immune rejection, and biomechanical mismatch, especially under dynamic loading conditions encountered in motion. 3D bioprinting offers a revolutionary approach for constructing patient-specific T/L grafts.
View Article and Find Full Text PDFRSC Adv
August 2025
University of Coimbra, CEMMPRE, ARISE, Department of Mechanical Engineering Rua Luís Reis Santos Coimbra 3030-788 Portugal.
This study addresses the growing need for sustainable and multifunctional materials by developing novel polycaprolactone (PCL)/chitosan (CS)/zirconium dioxide (ZrO) nanocomposite films. While PCL and CS offer biocompatibility and biodegradability, their combined use presents limitations for advanced applications requiring specific functional features. The incorporation of ZrO nanoparticles aims to overcome these limitations and create materials with enhanced mechanical, electrical, optical, and antibacterial properties.
View Article and Find Full Text PDFACS Biomater Sci Eng
September 2025
Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
Patient-derived tumor organoids (PDTOs) are promising 3D disease models for developing personalized treatment methods. However, conventional technologies for making PDTOs have limitations such as batch-to-batch variation and low throughput. Droplet microfluidics (DM), which utilizes uniform droplets generated in microchannels, has demonstrated potential for creating organoids due to its high-throughput and controllable parameters.
View Article and Find Full Text PDFEnviron Res
September 2025
China Construction Fourth Engineering Bureau Fifth Construction Engineering Co., Ltd. Nanxin Road, Nanshan District, Shenzhen, 518000, China. Electronic address:
The production of phosphogypsum (PG), calcium carbide slag (CS), and red mud (RM) in global industrial development imposes serious environmental issues. Utilizing CS and PG as curing agents and incorporating RM as a soil substitute can facilitate the solid waste resource utilization. However, few studies have investigated the synergistic effects of PG and CS on the stabilization of RM and soil.
View Article and Find Full Text PDFTalanta
September 2025
Glyn O. Phillips Hydrocolloid Research Centre, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering of Ministry of Education, Key Laboratory of Industrial Microbiology in Hubei Province, School of Life and Health Sciences, Hubei Univer
Given rising consumer demands for meat safety and quality assurance, developing an intuitive, cost-effective, and user-friendly sensor platform for real-time monitoring of perishable meat freshness is important. Herein, this study developed an innovative chitosan/agarose/blueberry anthocyanin (CS/AG/BA) hydrogel label system for visual real-time freshness tracking of perishable proteins through smartphone-assisted colorimetric analysis. Through systematic optimization of CS/AG compositional ratios (3:7-7:3) and pH conditions (2.
View Article and Find Full Text PDF