98%
921
2 minutes
20
Background: An efficient and accurate blood flow simulation can be useful for understanding many vascular diseases. Accurately resolving the blood flow velocity based on patient-specific geometries and model parameters is still a major challenge because of complex geomerty and turbulence issues. In addition, obtaining results in a short amount of computing time is important so that the simulation can be used in the clinical environment. In this work, we present a parallel scalable method for the patient-specific blood flow simulation with focuses on its parallel performance study and clinical verification.
Methods: We adopt a fully implicit unstructured finite element method for a patient-specific simulation of blood flow in a full precerebral artery. The 3D artery is constructed from MRI images, and a parallel Newton-Krylov method preconditioned with a two-level domain decomposition method is adopted to solve the large nonlinear system discretized from the time-dependent 3D Navier-Stokes equations in the artery with an integral outlet boundary condition. The simulated results are verified using the clinical data measured by transcranial Doppler ultrasound, and the parallel performance of the algorithm is studied on a supercomputer.
Results: The simulated velocity matches the clinical measured data well. Other simulated blood flow parameters, such as pressure and wall shear stress, are within reasonable ranges. The results show that the parallel algorithm scales up to 2160 processors with a 49% parallel efficiency for solving a problem with over 20 million unstructured elements on a supercomputer. For a standard cerebral blood flow simulation case with approximately 4 million finite elements, the calculation of one cardiac cycle can be finished within one hour with 1000 processors.
Conclusion: The proposed method is able to perform high-resolution 3D blood flow simulations in a patient-specific full precerebral artery within an acceptable time, and the simulated results are comparable with the clinical measured data, which demonstrates its high potential for clinical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2022.107004 | DOI Listing |
Nat Aging
September 2025
Aging Biomarker Consortium (ABC), Beijing, China.
The global surge in the population of people 60 years and older, including that in China, challenges healthcare systems with rising age-related diseases. To address this demographic change, the Aging Biomarker Consortium (ABC) has launched the X-Age Project to develop a comprehensive aging evaluation system tailored to the Chinese population. Our goal is to identify robust biomarkers and construct composite aging clocks that capture biological age, defined as an individual's physiological and molecular state, across diverse Chinese cohorts.
View Article and Find Full Text PDFAnn Biomed Eng
September 2025
Department of Mechanical Engineering, Koc University, Rumeli Feneri Campus, Sarıyer, 34450, Istanbul, Turkey.
Purpose: The design and development of ventricular assist devices have heavily relied on computational tools, particularly computational fluid dynamics (CFD), since the early 2000s. However, traditional CFD-based optimization requires costly trial-and-error approaches involving multiple design cycles. This study aims to propose a more efficient VAD design and optimization framework that overcomes these limitations.
View Article and Find Full Text PDFPediatr Res
September 2025
Laboratory of Fetal Neuroprogramming, Institute of Health Sciences, University of O'Higgins, Rancagua, Chile.
Background: Fetal growth restriction (FGR) causes an adaptive redistribution of the cardiac output towards sustained cerebral vasodilation. However, the consequences of FGR and cerebral vasodilatation due to fetal hypoxia on the blood-brain barrier (BBB) are still poorly studied. This study assesses BBB permeability in the neonatal cortex of pups gestated under intrauterine hypobaric hypoxia.
View Article and Find Full Text PDFZhonghua Jie He He Hu Xi Za Zhi
September 2025
Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 210032, China.
Antisynthetase syndrome(ASS) is an entity among the immune inflammatory myopathies(IIM), which always affects lungs. Interstitial lung disease(ILD) is common in ASS, while pulmonary hypertention(PH)is rarely observed. In this paper, we reported a case of ASS with ILD and PH.
View Article and Find Full Text PDFMed Eng Phys
October 2025
Ansys Inc., Houston, TX 77094, USA.
Introduction: Benchtop and animal models have traditionally been used to study the propagation of Onyx Liquid Embolic Systems (Onyx) used in the treatment of brain arteriovenous malformations (AVM). However, such models are costly, do not provide sufficient detail to elucidate how variations in Onyx viscosity alter flow dynamics, and rely on some trial-and-error, resulting in elongated timelines for product development.
Objectives: The goal of this study was to leverage Computational Fluid Dynamics (CFD) simulations to predict the behavior of different Onyx formulations.