98%
921
2 minutes
20
Studies that aim to produce flexible films of composite materials based on ionomers-PZT, and volume fractions lower than 10% PZT, in order to monitor damage in aeronautical structures are seldom investigated. The growing emphasis on the use of polymers capable of self-healing after damage or activation by heating has motivated the application of self-healing ionomers as polymeric matrices in composites with piezoelectric particles aiming to monitor damage. Flexible composite films were developed based on the self-healing polymer matrix Surlyn 8940 ionomer (DuPont-Wilmington, DE, USA) and PZT particles (connectivity 2-3) in volume fractions of 1, 3, 5 and 7%, with thickness around 50-100 µm. The choice of PZT volume fractions followed the preliminary requirement that establishes a final density, which is lower or at least close to the density of the materials used in aeronautical structures. Since the application of composites based on epoxy resin/carbon fibers has been increasing in the aeronautical segment, this material (with density lower than 1500 kg/m) was chosen as a reference for the present work. Thus, due to self-healing (a characteristic of the matrix Surlyn 8940) combined with recyclability, high flexibility and low thickness, the flexible composite films showed advantages to be applied on aeronautical structures, which present complex geometries and low-density materials. The manufactured films were characterized by SEM, XRD, DMA and mechanical tensile tests. The results were discussed mainly in terms of the volume fraction of PZT. X-ray diffraction patterns showed coexistent rhombohedral and tetragonal phases in the PZT particles-dispersed composite, which can potentialize the alignment of ferroelectric domains during polarization under strong electrical field, enhancing dielectric and piezoelectric properties toward sensing applications. DMA and tensile testing results demonstrated that the addition of PZT particles did not impair either dynamic or quasi-static mechanical performance of the flexible composite films. It was concluded that the PZT volume fraction should be lower than 3% because, for higher values, the molecular mobility of the polymer would suffer significant reductions. These findings, combined with the high flexibility and low density of the ceramic particle-filled thermoplastic polymer, render the developed flexible composite film a very promising candidate for strain and damage sensing in aeronautical structures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9269541 | PMC |
http://dx.doi.org/10.3390/polym14132755 | DOI Listing |
Discov Nano
September 2025
RRU 709, Department of Clinical Pharmacology, Advanced Centre for Training, Research and Education in Cancer, Kharghar, Navi Mumbai, India.
In this study, we investigated the influence of ultrasonic frequency during ultrasound-assisted chemical bath deposition (UCBD) on the surface morphology and electrochemical performance of CoO:MnO@CoMnO composite flexible electrodes for supercapacitor applications. By systematically varying the ultrasonic frequency (1.0-2.
View Article and Find Full Text PDFAdv Mater
September 2025
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
Perovskite materials have revolutionized optoelectronics by virtue of their tunable bandgaps, exceptional optoelectronic properties, and structural flexibility. Notably, the state-of-the-art performance of perovskite solar cells has reached 27%, making perovskite materials a promising candidate for next-generation photovoltaic technology. Although numerous reviews regarding perovskite materials have been published, the existing reviews generally focus on individual material systems (e.
View Article and Find Full Text PDFScand J Med Sci Sports
September 2025
Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
Dietary intake has an important influence on rates of fuel use during exercise, but the extent to which short-term diet changes affect peak fat oxidation (PFO) and the intensity at which this occurs (Fat) is unknown. This study examined the impact of diet-induced changes in substrate availability on PFO and Fat and the expression of key lipid-regulatory genes and proteins in skeletal muscle. Forty moderately to well-trained males (27 ± 5 years, V̇O 56.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Plant Fiber Material Science Research Center, State Key Laboratory of Advanced Papermaking and Paper-based Materials, South China University of Technology, Guangzhou, 510640, China.
The development of cellulose-based electromagnetic shielding materials is critical for the advancement of sustainable, lightweight, and flexible electronic devices. Most high-performance composites rely on nanocellulose, which is expensive and energy-intensive to produce. In this work, we employ chemically modified conventional eucalyptus pulp fibers (non-nano) to fabricate Janus-structured cellulose/MXene composite papers.
View Article and Find Full Text PDFMacromol Rapid Commun
September 2025
Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, P. R. China.
Rapid advancement of flexible electronics has generated a demand for sustainable materials. Cellulose, a renewable biopolymer, exhibits exceptional mechanical strength, customizable properties, biodegradability, and biocompatibility. These attributes are largely due to its hierarchical nanostructures and modifiable surface chemistry.
View Article and Find Full Text PDF