98%
921
2 minutes
20
Alzheimer’s disease (AD) involves the abnormal activity of transition metals and metal ion dyshomeostasis; however, the potential of trace metal biomarkers in predicting cognitive decline has not been evaluated. This study aimed to assess the potential of 36 trace elements in predicting cognitive decline in patients with amnestic mild cognitive impairment (aMCI) or AD. Participants (9 controls, 23 aMCI due to AD, and 8 AD dementia) underwent comprehensive cognitive tests, including the Mini-Mental State Examination (MMSE) and trace metal analysis. The correlations between the plasma trace element levels and annual MMSE changes during follow-up were analyzed. We found that an increase in disease severity was linked to lower plasma levels of boron (B), bismuth (Bi), thorium (Th), and uranium (U) (adjusted p < 0.05). Higher baseline calcium levels (r = 0.50, p = 0.026) were associated with less annual cognitive decline; those of B (r = −0.70, p = 0.001), zirconium (r = −0.58, p = 0.007), and Th (r = −0.52, p = 0.020) with rapid annual cognitive decline in the aMCI group; and those of manganese (r = −0.91, p = 0.035) with rapid annual cognitive decline in the AD group. Overall, our exploratory study suggests that plasma metal levels have great potential as in vivo biomarkers for aMCI and AD. Larger sample studies are necessary to confirm these results.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267221 | PMC |
http://dx.doi.org/10.3390/jcm11133655 | DOI Listing |
ACS Sens
September 2025
Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi 530021, China.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder primarily characterized by cognitive decline and behavioral impairments, typically manifesting in the elderly and presenile population. With the rapid global aging trend, early diagnosis and treatment of AD have become increasingly urgent research priorities. The primary pathological features of AD include excessive accumulation of β-amyloid (Aβ) plaques, the formation of neurofibrillary tangles, and neuronal loss.
View Article and Find Full Text PDFNeuropathol Appl Neurobiol
October 2025
Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Târgu Mureș, Romania.
Aims: The clusterin (CLU) gene is genetically associated with Alzheimer's disease (AD), and CLU levels have been shown to positively correlate with regional Aβ deposition in the brain, including in arteries from cerebral amyloid angiopathy (CAA) patients. CLU has also been shown to alter the aggregation, toxicity and blood-brain barrier transport of amyloid beta (Aβ) and has therefore been suggested to play a key role in regulating the balance between Aβ deposition and clearance in both the brain and cerebral blood vessels. However, it remains unclear whether the role of clusterin in relation to Aβ deposition is protective or pathogenic.
View Article and Find Full Text PDFJ Integr Neurosci
August 2025
Key Laboratory of Modern Toxicology of Ministry of Education; School of Basic Medical Sciences, Nanjing Medical University, 211166 Nanjing, Jiangsu, China.
Cognitive impairment represents a progressive neurodegenerative condition with severity ranging from mild cognitive impairment (MCI) to dementia and exerts significant burdens on both individuals and healthcare systems. Vascular cognitive impairment (VCI) represents a heterogeneous clinical continuum, spanning a spectrum from subcortical ischemic VCI (featuring small vessel disease, white matter lesions, and lacunar infarcts) to mixed dementia, where vascular and Alzheimer's-type pathologies coexist. While traditionally linked to macro- and microvascular dysfunction, the mechanisms underlying VCI remain complex.
View Article and Find Full Text PDFJ Integr Neurosci
August 2025
Department of Anesthesiology, The First Medical Center of Chinese PLA General Hospital, 100853 Beijing, China.
Neurocognitive disorders represent a significant global health challenge and are characterized by progressive cognitive decline across conditions including Alzheimer's disease, mild cognitive impairment, and diabetes-related cognitive impairment. The hippocampus is essential for learning and memory and requires intact neuroplasticity to maintain cognitive function. Recent evidence has identified the brain insulin signaling pathway as a key regulator of hippocampal neuroplasticity through multiple cellular processes including synaptic plasticity, neurotransmitter regulation, and neuronal survival.
View Article and Find Full Text PDFJ Integr Neurosci
August 2025
Complex Operative Unit (UOC) Otolaryngology-Head and Neck Surgery, Ospedale San Camillo de Lellis, Azienda Sanitaria Locale (ASL) Rieti-Sapienza University, 02100 Rieti, Italy.
Nasal cytology is evolving into a promising tool for diagnosing neurological and psychiatric disorders, especially those such as Alzheimer's and Parkinson's diseases. Moreover, recent research has indicated that biomarkers differ greatly between samples taken before and after death. Nasal cytology might help to identify the early stages of cognitive decline.
View Article and Find Full Text PDF