98%
921
2 minutes
20
The inversion from L- to D-stereochemistry endows peptides improved bioactivity and enhanced resistance to many proteases and peptidases. To strengthen the biostability and bioavailability of peptide drugs, enzymatic epimerization becomes an important way to incorporate D-amino acid into peptide backbones. Recently, a bifunctional thioesterase NocTE, which is responsible for the epimerization and hydrolysis of the C-terminal (p-hydroxyphenyl)glycine residue of β-lactam antibiotic nocardicin A, exclusively directs to the generation of D-diastereomers. Different from other epimerases, NocTE exhibits unique stereochemical selectivity. Herein, we investigated the catalytic mechanism of NocTE via molecular dynamic (MD) simulations and quantum mechanical/molecular mechanics (QM/MM) calculations. Through structural analyses, two key water molecules around the reaction site were found to serve as proton mediators in epimerization. The structural characteristics inspired us to propose a substrate-assisted mechanism for the epimerization, where multi-step proton transfers were mediated by water molecules and β-lactam ring, and the free energy barrier was calculated to be 20.3 kcal/mol. After that, the hydrolysis of D-configured substrate was energetically feasible with the energy barrier of 14.3 kcal/mol. As a comparison, the energy barrier for the direct hydrolysis of L-configured substrate was obtained to be 24.0 kcal/mol. Our study provides mechanistic insights into catalytic activities of bifunctional thioesterase NocTE, uncovers more clues to the molecular basis for stereochemical selectivity and paves the way for the directed biosynthesis of novel peptide drugs with various stereostructural characteristics by enzyme rational design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/prot.26395 | DOI Listing |
Mol Biol Rep
September 2025
Department of Pharmacology, Govt. College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India.
Alzheimer's disease (AD) is the most common, complex, and untreatable form of dementia which is characterized by severe cognitive, motor, neuropsychiatric, and behavioural impairments. These symptoms severely reduce the quality of life for patients and impose a significant burden on caregivers. The existing therapies offer only symptomatic relief without addressing the underlying silent pathological progression.
View Article and Find Full Text PDFJ Chem Phys
September 2025
Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
The formation of carbinolamine represents the crucial initial step in the aldol reaction, specifically involving the interaction between p-nitrobenzaldehyde and acetone, facilitated by amine-catalyzed mesoporous silica nanoparticles (amine-MSN). In this process, a nitrogen atom from propylamine, which acts as the catalytic moiety, engages in the formation of a covalent bond with a carbon atom from acetone, leading to the generation of a carbinolamine intermediate. This reaction is significantly influenced by the presence of silanol groups located on the surface of the amine-MSN, which contribute to the catalytic activity.
View Article and Find Full Text PDFChem Asian J
September 2025
School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China.
Molecules that exhibit excited-state intramolecular proton transfer (ESIPT) have demonstrated great promise in fluorescent probes. The electronic effect of substituents has an important influence on the ESIPT process. In this study, we investigated the effects of substituents on the ESIPT mechanism and the photophysical behavior of single-benzene fluorophore (SBF) derivatives with computational chemistry methods.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Computational Inorganic Chemistry Group, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502284, India.
Over the past few years, alkali and alkaline earth metals have emerged as alternative catalysts to transition metal organometallics to catalyze the hydroboration of unsaturated compounds. A highly selective and cost-effective lithium-catalyzed method for the synthesis of an organoborane has been established based on the addition of a B-H bond to an unsaturated bond (polarized or unpolarized) using pinacolborane (HBPin). In the present work, the neosilyllithium-catalyzed hydroboration of nitriles, aldehydes, and esters has been investigated using high-level DLPNO-CCSD(T) calculations to unravel the mechanistic pathways and substrate-dependent reactivity.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China.
Metal halide perovskites have garnered significant attention due to their exceptional photoelectric properties. The alkali metal doping strategy has been demonstrated to effectively modulate grain size, control crystallization kinetics, and adjust band gap characteristics in perovskite. This study employs the first-principles calculations to reveal that the selection of alkali metal species and their corresponding doping methodologies exert markedly distinct influences on both the electronic properties and ion migration kinetics of CsPbBr perovskites.
View Article and Find Full Text PDF