Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Transposable elements (TEs) constitute a large proportion of genomes of multicellular eukaryotes, including flowering plants. TEs are normally maintained in a silenced state and their transpositions rarely occur. Hybridization between distant species has been regarded as a 'shock' that stimulates genome reorganization, including TE mobilization. However, whether crosses between genetically close parents that result in viable and fertile offspring can induce TE transpositions has remained unclear. Here, we investigated the activation of long terminal repeat (LTR) retrotransposons in three Lotus japonicus recombinant inbred line (RIL) populations. We found that at least six LTR retrotransposon families were activated and transposed in 78% of the RILs investigated. LORE1a, one of the transposed LTR retrotransposons, showed transgenerational epigenetic activation, indicating the long-term effects of epigenetic instability induced by hybridization. Our study highlights TE activation as an unexpectedly common event in plant reproduction.

Download full-text PDF

Source
http://dx.doi.org/10.1111/tpj.15896DOI Listing

Publication Analysis

Top Keywords

recombinant inbred
8
lotus japonicus
8
ltr retrotransposons
8
widespread transgenerational
4
transgenerational retrotransposon
4
activation
4
retrotransposon activation
4
activation inter-
4
inter- intraspecies
4
intraspecies recombinant
4

Similar Publications

Background: Canine parvovirus (CPV) poses a severe threat to canine health, necessitating the development of safer and more effective vaccines. While traditional vaccines carry risks of virulence reversion and environmental contamination, subunit vaccines-especially neutralizing epitope vaccines-offer promising alternatives by eliciting targeted immune responses with enhanced safety.

Methods: We employed bacterial display technology to express 11 overlapping CPV VP2 gene fragments on the periplasmic membrane of E.

View Article and Find Full Text PDF

Inbred lines of , a wild relative of cultivated watermelon, are widely used as rootstocks to control soil-borne diseases for watermelon ( ) production. The most commonly used rootstock, 'Carolina strongback' (Syngenta, Basel, Switzerland) flowers weeks later than commercial watermelon cultivars, which delays the onset of female flowering (DFF) of the scion, leading to an undesirable delay in fruit maturity and harvesting. Understanding the genetics of DFF in a population will facilitate the development of rootstocks with the early flowering habits preferred for commercial production.

View Article and Find Full Text PDF

Nitrogen (N), phosphorus (P), and sulfur (S) are essential nutrients for plant health. Deficiencies in N, P, or S in plants lead to lower seed production and seed quality in grain crops, including soybean seed. Soybean seed is a source of protein, oil, essential amino acids, and minerals.

View Article and Find Full Text PDF

QTL mapping and candidate genes prediction for plant height and brix content in sorghum [Sorghum bicolor (L.) Moench].

Theor Appl Genet

September 2025

College of Agriculture, Northwest A&F University, State Key Laboratory of Crop Stress Biology in Arid Areas, Yangling, Xianyang, 712100, China.

By constructing a high-density genetic linkage map using a recombinant inbred line (RIL) population from two sorghum lines with distinct variations in plant height and brix content, eight genetic loci were identified, and candidate genes associated with these traits were predicted. Sorghum, recognized as a crucial forage and energy crop, exhibits yield and quality influenced by plant height and sugar content traits. Considering the complex genetic architecture of plant height and sugar content, this study utilized a sorghum recombinant inbred line population comprising 250 lines to elucidate the phenotypic variation and genetic foundations of these traits.

View Article and Find Full Text PDF

Background: Heart failure with preserved ejection fraction (HFpEF), which accounts for more than half of all heart failure cases worldwide, has emerged as a major public health challenge characterized by substantial morbidity and mortality rates. As adropin is a key regulator of cardiovascular and metabolic homeostasis, this study investigated its therapeutic effects against HFpEF pathogenesis.

Methods: C57BL/6 mice were fed a high-fat diet (60% fat-derived calories) with NG-nitro-L-arginine methyl ester (L-NAME, 0.

View Article and Find Full Text PDF