A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Proteomic and miRNA profiling of radon-induced skin damage in mice: FASN regulated by miRNAs. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Radon is a naturally occurring radioactive gas and considered as a serious carcinogen to humans. Continuous radioactive decay of this gas emits high-energy alpha particles. Long-term radon exposure induces oxidative stress and inflammatory response, which results in chronic lung diseases. However, biological effects after radon exposure in other organs have been rarely reported. As the outermost organ of the human body, the skin suffers from environmental damage to agents such as air pollution. Epidemiological studies indicated that areas with high level of radon had a high incidence of skin cancer. However, whether radon exposure induces skin damage has not been reported yet. In this study, we established a radon-exposed mouse model and found that radon exposure affected the structure of skin tissues, which was manifested by inflammatory cell infiltration and skin atrophy. Using proteomic approach, we found 45 preferentially expressed proteins in 60 Working Level Months (WLM) group and 314 preferentially expressed proteins in 120 WLM group from radon-exposed skin tissues. Through microRNA (miRNA) sequencing profiling analysis, 57 dysregulated miRNAs were screened between the control and radon-treated mouse skin. By integrating the dysregulated proteins and miRNAs, radon-induced fatty acid synthase (FASN) was investigated in greater detail. Results showed that FASN was regulated by miR-206-3p and miR-378a-3p and involved in the pathogenesis of radon-induced skin damage. Overexpression of FASN inhibited the proliferation, and induced in WS1 cells. Our present findings illustrate the molecular change during radon-induced skin damage and the potential role of FASN during this process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9494515PMC
http://dx.doi.org/10.1093/jrr/rrac037DOI Listing

Publication Analysis

Top Keywords

skin damage
16
radon exposure
16
radon-induced skin
12
skin
10
fasn regulated
8
exposure induces
8
skin tissues
8
preferentially expressed
8
expressed proteins
8
wlm group
8

Similar Publications