98%
921
2 minutes
20
Currently, biphasic solvents are receiving more attention for CO capture due to their energy-saving potential. Whereas, most of the current biphasic solvents still suffer from high viscosity and low regeneration efficiency. To solve this problem, a novel tri-solvent biphasic solvent triethylenetetramine (TETA)-2-amino-2-methyl-1-propanol (AMP)-1-dimethylamino-2-propanol (1DMA2P) was proposed in this study, and its absorption properties, viscosity changes, desorption properties, recyclability capacity, and reaction mechanism were explored. The results showed that the CO absorption load showed a trend of firstly increasing and then decreasing with the increase of AMP concentration. Although the volume of the rich phase increased with increasing AMP concentration after the absorption, it also decreases the viscosity growth. The viscosity of the solution decreased from 498 mPa•s to 91 mPa•s. During the desorption process, the maximal desorption rates of AMP-containing solvents is significantly greater than that of 2 mol/L (M) TETA + 2 M 1DMA2P (2T2D). Simultaneously, the recyclability capacity of the AMP-containing solvents were also significantly higher than that of 2T2D. The regeneration efficiency of 1.5 M TETA + 0.5 M AMP + 2 M 1DMA2P (1.5T0.5A2D) was 81.92%. It was concluded by C NMR analysis that amino groups in TETA and AMP can react with CO to form carbamates and carbonates. Since AMP in the biphasic solution can generate free protons through various pathways during the desorption process, it promotes the decomposition of TETA-carbamate. This process achieves the deep stripping of CO in biphasic solvent. Overall, TETA-AMP-1DMA2P solution is a promising energy-saving candidate for industrial CO capture due to its competitive absorption-desorption performance and low viscosity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-21822-6 | DOI Listing |
J Am Chem Soc
September 2025
Department of Chemistry, Northwestern University Evanston, Illinois 60208, United States.
Per- and polyfluoroalkyl substances (PFASs) are environmentally persistent, bioaccumulative, and toxic chemicals that contaminate global drinking water resources. Their ubiquity and potential impact on human health motivate large-scale remediation. Conventional materials used to remove PFASs during drinking water production are functionally inefficient or energetically expensive, motivating the discovery of new materials and technologies.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States.
Hydrogel-based bioinks are widely adopted in digital light processing (DLP) 3D printing. Modulating their mechanical properties is especially beneficial in biomedical applications, such as directing cell activity toward tissue regeneration and healing. However, in both monolithic and granular hydrogels, the tunability of mechanical properties is limited to parameters such as cross-linking or packing density.
View Article and Find Full Text PDFRegen Med
September 2025
Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis School of Biological Sciences (SSBS), Symbiosis International, Deemed University, Lavale, Pune, India.
Aims: This study aimed to enhance the osteoinductive potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) by integrating them into a nano-hydroxyapatite (nHAp)-enriched hydrogel scaffold for bone regeneration applications.
Materials & Methods: EVs were isolated from naïve and osteogenically primed MSCs and characterized for morphology, cargo content, and cytocompatibility. Their uptake and osteoinductive activity were assessed using MC3T3 cells within a 3D interpenetrating network (IPN) hydrogel.
Int J Vitam Nutr Res
August 2025
Department of Plastic and Cosmetic Center, The First Affiliated Hospital, Zhejiang University, 310003 Hangzhou, Zhejiang, China.
The vitamin B complex, a group of water-soluble vitamins, is essential for various metabolic and cellular processes and critical for achieving optimal surgical outcomes in plastic and cosmetic procedures. This review examines the mechanistic contributions of this complex at the cellular level, including any roles in mitochondrial bioenergetics, redox balance, gene regulation, and cellular repair mechanisms. Niacinamide, as a precursor to NAD⁺, enhances mitochondrial efficiency and facilitates energy production, supporting tissue regeneration.
View Article and Find Full Text PDFClin Exp Dent Res
October 2025
Laboratory of Experimental Physiopathology, Program of postgraduate in Science of Health, Universidade do Extremo Sul Catarinense, Criciúma, Santa Catarina state, Brazil.
Objectives: This study aimed to compare the effects of silver nanoparticles (AgNPs) synthesized with Curcumin (Curcuma longa L.) or Açai (Euterpe oleracea) versus a commercial treatment and photobiomodulation in rat palatal wounds.
Methods: In vitro cell viability tests assessed nanoparticle toxicity.