Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ephedra sinica, a well-known Chinese medicinal plant, is characterized as having the opposite medicinal effect among its root and stem. However, there is a lack of understanding to differentiate the active components present in the root and stem of E. sinica, as well as the molecular mechanisms underlying the formation of the differential compounds, which has significantly hampered the further development and utilization of E. sinica resource. In this study, forty-five differential metabolic markers are affiliated to alkaloids, flavonoids, terpenoids, and organic acids between root and stem of E. sinica, and sixty genes of key enzymes are involved in their biosynthesis distributed in metabolic pathway branches such as phenylalanine metabolism, flavonoid biosynthesis and phenylpropane biosynthesis, based on combination non-targeted metabolome with transcriptome technologies. The finding revealed that the expression activity changes of these enzyme genes had a direct impact on the distinction of differential metabolic markers in the root and stem of E. sinica. This study will help to understand the molecular mechanism of the differentiation and biosynthesis of the primary active metabolites in the root and stem of E. sinica, providing a theoretical foundation for its quality control and promotion in cultivation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-022-04039-8DOI Listing

Publication Analysis

Top Keywords

root stem
24
stem sinica
16
ephedra sinica
8
differential metabolic
8
metabolic markers
8
sinica
7
root
6
stem
6
transcriptional regulatory
4
regulatory mechanism
4

Similar Publications

This study focuses on the differences in bioaccumulation and metabolic patterns of seven fungicides between and its host plant, peanut. The BCF value of the fungicides in ranging from 0.62 to 2.

View Article and Find Full Text PDF

Introduction: Transcription factors (TFs) are essential regulators of gene expression, orchestrating plant growth, development, and responses to environmental stress. , a halophytic species renowned for its exceptional salt resistance, provides an ideal model for investigating the regulatory mechanisms underlying salt tolerance.

Methods: Here, we present a comprehensive genome-wide identification and characterization of TFs in .

View Article and Find Full Text PDF

Foliar application of selenium nanoparticles enhance quality and mitigate negative plant-soil feedback in Panax notoginseng by modulating plant-microbiota interactions.

Pestic Biochem Physiol

November 2025

State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China; Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China; China France

Developing a practical strategy to enhance the quality of medicinal herb while alleviating negative plant-soil feedback (NPSF) is critical for agriculture. In this study, we investigated the effects of selenium nanoparticles (SeNPs) on Panax notoginseng through a two-year field experiment. Four treatments were established: a control (SeNPs_0) and three SeNPs concentrations (3, 5, and 10 mg/L), which were foliar-sprayed every 15 days for a total of six applications.

View Article and Find Full Text PDF

Integrated screening of quality markers from Paris polyphylla var. yunnanensis using UHPLC-Q/TOF-HRMS, spectrum-effect relationship analysis, network pharmacology, and quantitative analysis.

J Pharm Biomed Anal

September 2025

Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center and College of Pharmacy, Shaanxi University of Chinese Medicine, Xia

This study aims to comprehensively screen quality markers using an integrated multi-strategy approach combining plant metabolomics, spectrum-effect relationship analysis, network pharmacology, and quantitative analysis, thereby providing a basis for quality control of Paris polyphylla var. yunnanensis and its closely related species. Firstly, 14 differential metabolites were screened from the roots, stems, and leaves of Paris polyphylla var.

View Article and Find Full Text PDF

This study presents the first attempt on plant biomonitoring of the polycyclic aromatic hydrocarbons (PAHs) pollution in East Kolkata Wetland (EKW), a Ramsar site in India, using Alternanthera ficoidea (L.). A polluted site, Captain Bheri (CB) and a control area, Kansabati River Basin (KRB) are chosen to compare the severity of the PAHs pollution of the wetland by examining wetland sediment and wetland plant parts (leaf, root, stem, rhizobium).

View Article and Find Full Text PDF