Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Electron transfer (ET) processes are of broad interest in modern chemistry. With the advancements of experimental techniques, one may modulate the ET via such events as light-matter interactions. In this work, we study the ET under a Floquet modulation occurring in the donor-bridge-acceptor systems, with the rate kernels projected out from the exact dissipaton equation of motion formalism. This together with the Floquet theorem enables us to investigate the interplay between the intrinsic non-Markovianity and the driving periodicity. The observed rate kernel exhibits a Herzberg-Teller-like mechanism induced by the bridge fluctuation subject to effective modulation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpca.2c03308DOI Listing

Publication Analysis

Top Keywords

electron transfer
8
floquet modulation
8
donor-bridge-acceptor systems
8
transfer floquet
4
modulation donor-bridge-acceptor
4
systems electron
4
transfer processes
4
processes broad
4
broad interest
4
interest modern
4

Similar Publications

Soda biscuit-like Ag-ZnO@ZIF-8 heterostructures were successfully synthesized using a secondary hydrothermal method for the first time, demonstrating exceptional ethylene glycol sensing performance. The sample (2-Methylimidazol (MeIm) concentration of 0.04 g) exhibits a remarkable response value of 1325.

View Article and Find Full Text PDF

A sensitive electrochemical glucose biosensor using ZrO₂@CNTs nanocomposite was developed for real-time metabolism monitoring for athletes. The nanocomposite was prepared by a simple ultrasound-assisted technique, and the glucose oxidase (GOx) was covalently immobilized to improve the biorecognition ability. CNTs treated with acid served as a highly conductive framework, and ZrO₂ nanoparticles can provide structural stability and catalytic performance, thus showing synergistic enhancement of electron transfer kinetics and enzyme loading capacity.

View Article and Find Full Text PDF

Proton transfer plays an important role in both hydrogen and oxygen evolution reactions during electrocatalytic water splitting to produce green hydrogen. However, directly adapting the conventional proton/deuterium kinetic isotope effect to study proton transfer in heterogeneous electrocatalytic processes is challenging. Here we propose using the shift in the Tafel slope between protic and deuteric electrolytes, or the Tafel slope isotope effect, as an effective probe of proton transfer characteristics.

View Article and Find Full Text PDF

In this study, we analyze InO thin-film transistors (InO-TFT) using synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES) in conditions. A bottom-gate InO-TFT with a high- AlO gate dielectric, grown on thermally oxidized silicon (SiO/p-Si), was examined while operating at varying and . The results reveal that the In 3d core level binding energy varies along the horizontal channel length, driven by the potential gradient induced by .

View Article and Find Full Text PDF

Several genes in the mitochondria of angiosperms are interrupted by introns, and their posttranscriptional excision involves numerous nucleus-encoded auxiliary factors. Most of these factors are of eukaryotic origin, among them members of the pentatricopeptide-repeat (PPR) family of RNA-binding proteins. This family divides into the PLS and P classes, with PLS-class proteins typically participating in C-to-U mRNA editing and P-class members contributing to transcript stabilization and intron splicing.

View Article and Find Full Text PDF