98%
921
2 minutes
20
3D-QSAR models were established by collecting 46 multivariate-substituted 4-oxyquinazoline HDAC6 inhibitors. The relationship of molecular structure and inhibitory activity was studied by comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA). The results showed the models established by CoMFA (q = 0.590, r = 0.965) and CoMSIA (q = 0.594, r = 0.931) had good prediction ability. At the same time, 3D-QSAR models met the internal verification, external verification and AD test. Ten new compounds were designed based on CoMFA and CoMSIA contour maps and their pharmacokinetic/toxic properties (ADME/T) were evaluated. It was found that most compounds have well safety profile and pharmacokinetic property. Then, we explored the interaction between HDAC6 and compounds by molecular docking. The results showed that the binding mode of the new compounds with HDAC6 was the same as the template compound 46, and the hydrogen bond and hydrophobic bond played a vital role in the binding process. Molecular dynamics simulation results showed that residues Ser531, His574 and Tyr745 played key roles in the binding process. All newly designed compounds had lower energy gap and binding energy than compound 46 according to DFT analysis and free energy analysis. This study provided a theoretical reference for designing compounds of higher activity and a new idea for the development of novel HDAC6 inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11030-022-10474-w | DOI Listing |
Arch Toxicol
September 2025
Mainz University Medical Center, Mainz, Germany.
Opinion Letter to Sin et al (Science Advances, 2025), Sorbate induces lysine sorbylation through noncanonical activities of class I HDACs to regulate the expression of inflammation genes.
View Article and Find Full Text PDFMol Psychiatry
September 2025
Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, 14203, US.
Hyperphosphorylation of Tau and the ensuing microtubule destabilization are linked to synaptic dysfunction in Alzheimer's disease (AD). We find a marked increase of phosphorylated Tau (pTau) in cortical neurons differentiated from induced pluripotent stem cells (iPSCs) of AD patients. It is accompanied by significantly elevated expression of Serum and Glucocorticoid-regulated Kinase-1 (SGK1), which is induced by cellular stress, and Histone Deacetylase 6 (HDAC6), which deacetylates tubulin to destabilize microtubules.
View Article and Find Full Text PDFBioorg Chem
August 2025
School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan. Electronic address:
HDAC inhibitors, which have been proven to be effective for some cancers, have potential as treatments for Non-small cell lung cancer (NSCLC). Building on the core structure of the highly selective HDAC6 inhibitor J22352, we modified various zinc-binding groups of this inhibitor. The resulting compounds 1-8 were designed and synthesized to explore potential derivatives and assess their effects on NSCLC bioactivity.
View Article and Find Full Text PDFCancer Lett
September 2025
Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea. Electronic address:
Tumor protein 53 (TP53)-mutated acute myeloid leukemia (AML) is characterized by poor outcomes and the quick development of treatment resistance. Here, we report that simultaneous inhibition of cyclin-dependent kinases (CDKs) and histone deacetylases (HDACs) with dinaciclib and CAY10603, respectively, eliminates the therapeutic response gap between TP53-mutant and TP53 wild-type AML. Biochemical profiling showed that CAY10603 is not only HDAC6-selective but also exhibits pan-HDAC activity similar to suberoylanilide hydroxamic acid, enabling dual targeting of transcriptional and cell cycle pathways.
View Article and Find Full Text PDFBioorg Chem
August 2025
Department of Medicinal Chemistry, School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, China. Electronic address:
Histone deacetylase 6 (HDAC6) has emerged as a promising therapeutic target in drug discovery. Aberrant expression of HDAC6 is associated with various diseases, including cancer, neurodegenerative disorders, and pathological autoimmune responses. Inhibition of HDAC6 has been extensively investigated for the treatment of multiple diseases, particularly cancer.
View Article and Find Full Text PDF