A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Cold-Starting All-Solid-State Batteries from Room Temperature by Thermally Modulated Current Collector in Sub-Minute. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

All-solid-state batteries (ASSBs) show great potential as high-energy and high-power energy-storage devices but their attainable energy/power density at room temperature is severely reduced because of the sluggish kinetics of lithium-ion transport. Here a thermally modulated current collector (TMCC) is reported, which can rapidly cold-start ASSBs from room temperature to operating temperatures (70-90 °C) in less than 1 min, and simultaneously enhance the transient peak power density by 15-fold compared to one without heating. This TMCC is prepared by integrating a uniform, ultrathin (≈200 nm) nickel layer as a thermal modulator within an ultralight polymer-based current collector. By isolating the thermal modulator from the ion/electron pathway of ASSBs, it can provide fast, stable heat control yet does not interfere with regular battery operation. Moreover, this ultrathin (13.2 µm) TMCC effectively shortens the heat-transfer pathway, minimizes heat losses, and mitigates the formation of local hot spots. The simulated heating energy consumption can be as low as ≈3.94% of the total battery energy. This TMCC design with good tunability opens new frontiers toward smart energy-storage devices in the future from the current collector perspective.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202202848DOI Listing

Publication Analysis

Top Keywords

current collector
16
room temperature
12
all-solid-state batteries
8
thermally modulated
8
modulated current
8
energy-storage devices
8
thermal modulator
8
cold-starting all-solid-state
4
batteries room
4
temperature thermally
4

Similar Publications