Superstretchable Elastomer from Cross-linked Ring Polymers.

Phys Rev Lett

Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA.

Published: June 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The stretchability of polymeric materials is critical to many applications such as flexible electronics and soft robotics, yet the stretchability of conventional cross-linked linear polymers is limited by the entanglements between polymer chains. We show using molecular dynamics simulations that cross-linked ring polymers are significantly more stretchable than cross-linked linear polymers. Compared to linear polymers, the entanglements between ring polymers do not act as effective cross-links. As a result, the stretchability of cross-linked ring polymers is determined by the maximum extension of polymer strands between cross-links, rather than between trapped entanglements as in cross-linked linear polymers. The more compact conformation of ring polymers before deformation also contributes to the increase in stretchability.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.128.237801DOI Listing

Publication Analysis

Top Keywords

ring polymers
20
linear polymers
16
cross-linked ring
12
cross-linked linear
12
polymers
9
cross-linked
6
ring
5
superstretchable elastomer
4
elastomer cross-linked
4
stretchability
4

Similar Publications

In single crystals of C-N atropisomeric -(2-halophenyl)quinolin-2-one and the thione analogue, a unique association based on a halogen-π interaction was detected. In racemic and optically pure -(2-bromo- or 2-chlorophenyl)quinolin-2-ones, homochiral layered polymers, which consist of ()- or ()-atropisomers, were formed through intermolecular halogen-π association. The halogen-π association in the racemates is due to a halogen bond (C-X···π) between a σ-hole on the halogen atom and a π-electron on the quinolinone benzene ring, while that in optically pure forms is caused by an n-π* interaction between a lone electron pair on the halogen atom and a π* orbital of the quinolinone.

View Article and Find Full Text PDF

Semicrystalline Polymer Donors for Simultaneous Dark Current Suppression and Photocurrent Enhancement in High-Performance Photomultiplication-Type Organic Photodetectors.

ACS Appl Mater Interfaces

September 2025

Department of Organic and Nano Engineering, and Human-Tech Convergence Program, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.

Photomultiplication-type organic photodetectors (PM-type OPDs) have recently attracted attention. However, the development of polymer donors specifically tailored for this architecture has rarely been reported. In this study, we synthesized benzobisoxazole-based polymer donors incorporating alkylated π-spacers that simultaneously enhance photocurrent density () and suppress dark current density (), leading to high responsivity () and specific detectivity (*).

View Article and Find Full Text PDF

The oxygen reduction reaction (ORR) is critical to energy conversion technologies and requires efficient catalysts for superior performance. Herein, nitrogen-doped carbide-derived carbon (N-CDC) catalysts are prepared using novel engineered molecular architectures based on polymer-derived ceramic technology. The obtained catalyst materials show a surface N concentration of >5 wt % and a hierarchically porous structure, resulting in a specific surface area of over 2000 m g.

View Article and Find Full Text PDF

Light-activated antimicrobial polymers with citronellol-enhanced bacterial accumulation for on-demand disinfection.

J Mater Chem B

September 2025

School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.

Antibacterial photodynamic therapy offers a promising approach for combating both susceptible and multidrug-resistant pathogens. However, conventional photosensitizers have limitations in terms of poor binding specificity and weak penetration for pathogens. In this study, we developed synergistic photobactericidal polymers that integrate hydrophilic toluidine blue O (TBO) with the lipophilic penetration enhancer citronellol (CT).

View Article and Find Full Text PDF

Regioselective Ring-Opening Polymerization of Asymmetric Cyclic Dimers for Polyester-Based Alternating Copolymers.

Chemistry

September 2025

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.

Sequence-controlled polyester-based alternating copolymers have attracted significant interest due to their biocompatibility, biodegradability, closed-loop recyclability, and hydrolytic degradability, offering broad potential in biomedical and sustainable materials. Among the available strategies, regioselective ring-opening polymerization (ROP) of asymmetric cyclic di(thio)esters and cyclic(ester-amide)s has emerged as a promising approach for constructing alternating copolymers with precise sequence- and stereo-control, structural diversity, and tunable properties. This review classifies asymmetric cyclic monomers into two categories: (1) monomers with two aliphatic ester bonds, where regioselectivity is mainly dictated by steric differences and typically requires tailored metal catalysts; and (2) monomers with chemically distinct reactive sites (e.

View Article and Find Full Text PDF