Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Monoterpene indole alkaloid (MIA) constitutes a structurally diverse plant natural product group with remarkable pharmacological activities. Many MIAs have been routinely used as potent drugs for several diseases, including leukemia (vinblastine), lung cancer (camptothecin), and malaria (quinine). Nevertheless, MIAs are biosynthesized at extremely low abundance in plants and, in many cases, require additional chemical functionalizations before their therapeutic uses. As oxygenations and oxidative rearrangements are critical throughout MIAs' structural scaffolding and modifications, the discovery and engineering of oxidative enzymes play essential roles in understanding and boosting the supplies of MIAs. Recent advances in omics technologies and synthetic biology have provided unprecedented amount of biochemical data and tools, paving a wide pathway for discovering, characterizing, and engineering enzymes involved in MIA biosynthesis. Here, we discuss the latest progress in understanding the roles of oxidative enzymes in MIA metabolism and describe a bioinformatic and biochemical pipeline to identify, characterize, and make use of these plant biocatalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-2349-7_11DOI Listing

Publication Analysis

Top Keywords

oxidative enzymes
12
enzymes involved
8
indole alkaloid
8
discovery characterization
4
oxidative
4
characterization oxidative
4
enzymes
4
involved monoterpenoid
4
monoterpenoid indole
4
alkaloid biosynthesis
4

Similar Publications

Roles of Extracellular Superoxide Dismutase in Regulating Cell Migration and Vesicle Trafficking in Dictyostelium and Mammalian Cells.

Dev Growth Differ

September 2025

Department of Biological Sciences, College of Arts, Sciences, and Education, Florida International University, Miami, Florida, USA.

Superoxide dismutases (SODs) are key regulators of reactive oxygen species (ROS) and redox balance. Although intracellular SODs have been extensively studied, growing attention has been directed toward understanding the roles of extracellular SODs in both Dictyostelium and mammalian systems. In Dictyostelium discoideum, SodC is a glycosylphosphatidylinositol (GPI)-anchored enzyme that modulates extracellular superoxide to regulate Ras, PI3K signaling, and cytoskeletal remodeling during directional cell migration.

View Article and Find Full Text PDF

Parkinson's disease (PD) is characterized by impairments in motor control following the degeneration of dopamine-producing neurons located in the substantia nigra pars compacta. Environmental pesticides such as Paraquat (PQ) and Maneb (MB) contribute to the onset of PD by inducing oxidative stress (OS). This study evaluated the therapeutic efficacy of moderate physical activity (PA) on both motor and non-motor symptoms in a Wistar rat model of Paraquat and Maneb (PQ/MB) induced PD.

View Article and Find Full Text PDF

Drought stress is the most vulnerable abiotic factor affecting plant growth and yield. The use of silicic acid as seed priming treatment is emerging as an effective approach to regulate maize plants susceptibility to water stress. The study was formulated for investigating the effect of silicic acid seed priming treatment in modulating the oxidative defense and key physio-biochemical attributes of maize plants under drought stress conditions.

View Article and Find Full Text PDF

Purpose: To explore the causal links between antihypertension drugs usage and age-related macular degeneration (AMD).

Methods: Multiple genetic analyses, including summary data-based Mendelian randomization (SMR), traditional MR, and colocalization analysis, were used to explore the causal associations between antihypertension drugs and AMD. Clinical data from the UK Biobank and the National Health and Nutrition Examination Survey (NHANES) was applied to refined risk assessment of specific antihypertensive medications in the context of AMD development.

View Article and Find Full Text PDF

Diatom-Inspired Scaffold for Infected Bone Defect Therapy: Achieving Stable Photothermal Properties and Coordinated Antibacterial-Osteogenic Functions.

Adv Mater

September 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Bone defect therapy frequently encounters bacterial infections and chronic inflammation, which impair bone regeneration and threaten implant stability. Iron oxide nanoparticles have attracted attention due to cost-effectiveness, biocompatibility, and metabolic safety. However, iron oxide nanoparticles still struggle to balance low-temperature efficient antibacterial activity, effective immunomodulation, and bone regeneration.

View Article and Find Full Text PDF