Towards scalable plasmonic Fano-resonant metasurfaces for colorimetric sensing.

Nanotechnology

US Army Research Laboratory, 4600 Deer Creek Loop, Aberdeen Proving Ground, MD 21005, United States of America.

Published: July 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Transitioning plasmonic metasurfaces into practical, low-cost applications requires meta-atom designs that focus on ease of manufacturability and a robustness with respect to structural imperfections and nonideal substrates. It also requires the use of inexpensive, earth-abundant metals such as Al for plasmonic properties. In this study, we focus on combining two aspects of plasmonic metasurfaces-visible coloration and Fano resonances-in a morphology amenable to scalable manufacturing. The resulting plasmonic metasurface is a candidate for reflective colorimetric sensing. We examine the potential of this metasurface for reflective strain sensing, where the periodicity of the meta-atoms could ultimately be modified by a potential flexion, and for localized surface plasmon resonance refractive index sensing. This study evaluates the potential of streamlined meta-atom design combined with low-cost metallization for inexpensive sensor readout based on human optical perception.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ac7b33DOI Listing

Publication Analysis

Top Keywords

colorimetric sensing
8
scalable plasmonic
4
plasmonic fano-resonant
4
fano-resonant metasurfaces
4
metasurfaces colorimetric
4
sensing
4
sensing transitioning
4
plasmonic
4
transitioning plasmonic
4
plasmonic metasurfaces
4

Similar Publications

Asymmetrically Coordinated CoN Sites with Enhanced Oxidase-like Activity for Dual-Mode Colorimetric Sensing of Nitrite.

ACS Appl Mater Interfaces

September 2025

State Key Laboratory of Advanced Materials for Intelligent Sensing & Key Laboratory of Organic Integrated Circuit Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science & Institute of Molecular Aggregation Science, Tianjin Univ

The design of efficient and user-friendly methods for nitrite detection is of great significance owing to its critical role in food safety and environmental protection. Herein, we report a novel cobalt single-atom nanozyme (CoN SA) featuring a highly asymmetric CoN coordination environment. This structural configuration stabilizes high-spin Co species and significantly enhances the oxidase-like activity.

View Article and Find Full Text PDF

Fluoroquinolones are a popular class of antibiotics, which can lead to residues in food and the environment due to their abuse and illegal use. Consequently, this can pose a threat to human health. We hypothesized that a core-shell structured magnetic lanthanide metal-organic framework could serve as an effective dual-mode nanosensor, leveraging its antenna effect and peroxidase (POD)-like activity for the sensitive detection of fluoroquinolones.

View Article and Find Full Text PDF

Long-wavelength emission carbon dots as ratiometric fluorescent and colorimetric dual-mode sensors for environmental sensing and bioimaging of hypochlorite.

J Hazard Mater

August 2025

Institute of Environmental Science, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China. Electronic address:

For the first time, long-wavelength red emission carbon dots (R-CDs) were prepared as ratiometric fluorescent and colorimetric dual-mode sensors for detecting ClO using a simple one-step hydrothermal method. R-CDs exhibited intrinsic red fluorescence at 587 nm. Upon interaction with ClO, a new and enhanced green fluorescence at 535 nm was observed, which was attributed to resulting from the oxidation of surface hydroxyl (-OH) groups to carbonyl (CO) groups.

View Article and Find Full Text PDF

Background: Tension pneumothorax is not uncommon. Effective Decompression of tension pneumothorax is lifesaving. Current guidelines recommend needle decompression (ND) as the initial decompression procedure.

View Article and Find Full Text PDF

A novel dual-mode sensing system integrating a magnetic core-shell CuFeO/Cu/MnO nanozyme with a stimuli-responsive agarose-deep eutectic solvent hydrogel (DES-Aga) is reported. The nanozyme exhibits exceptional oxidase-like activity, characterized by a low Michaelis constant (K = 0.14 mM) and high catalytic efficiency (V = 1.

View Article and Find Full Text PDF