98%
921
2 minutes
20
Objective: Advancements in fluoroscopy-assisted procedures have increased radiation exposure among cardiologists. Radiation has been linked to cardiovascular complications but its effect on cardiac rhythm, specifically, is underexplored.
Methods: Demographic, social, occupational, and medical history information was collected from board-certified cardiologists via an electronic survey. Bivariate and multivariable logistic regression analyses were performed to assess the risk of atrial arrhythmias (AA).
Results: We received 1,478 responses (8.8% response rate) from cardiologists, of whom 85.4% were male, and 66.1% were ≤65 years of age. Approximately 36% were interventional cardiologists and 16% were electrophysiologists. Cardiologists > 50 years of age, with > 10,000 hours (h) of radiation exposure, had a significantly lower prevalence of AA vs. those with ≤10,000 h (11.1% vs. 16.7%, = 0.019). A multivariable logistic regression was performed and among cardiologists > 50 years of age, exposure to > 10,000 radiation hours was significantly associated with a lower likelihood of AA, after adjusting for age, sex, diabetes mellitus, hypertension, and obstructive sleep apnea (adjusted OR 0.57; 95% CI 0.38-0.85, = 0.007). The traditional risk factors for AA (age, sex, hypertension, diabetes mellitus, and obstructive sleep apnea) correlated positively with AA in our data set. Cataracts, a well-established complication of radiation exposure, were more prevalent in those exposed to > 10,000 h of radiation vs. those exposed to ≤10,000 h of radiation, validating the dependent (AA) and independent variables (radiation exposure), respectively.
Conclusion: AA prevalence may be inversely associated with radiation exposure in Cardiologists based on self-reported data on diagnosis and radiation hours. Large-scale prospective studies are needed to validate these findings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9196104 | PMC |
http://dx.doi.org/10.3389/fcvm.2022.863939 | DOI Listing |
Front Bioeng Biotechnol
August 2025
Navy Special Medical Centre, Second Military Medical University, Shanghai, China.
Radiation exposure initiates a cascade of reactions, including the release of reactive oxygen species, DNA double-strand breaks, and cellular apoptosis, leading to cell death, tissue damage, and potentially the development of cancer. Consequently, there is an urgent need to develop highly effective and low-toxicity radioprotective agents. Traditional chemically synthesized protective agents face significant limitations in clinical applicability due to their pronounced off-target toxicity, narrow therapeutic window, and high production costs.
View Article and Find Full Text PDFFront Fungal Biol
August 2025
Department of Crop Science, University of Ghana, Accra, Ghana.
Chili pepper exports from Ghana are subject to stringent chemical residue regulations in key export destinations. Consequently, microbial biopesticides are urgently needed to complement current nonchemical control options for key pests of chili pepper, particularly the phytosanitary insect, False Codling Moth (FCM). Thus, the search for native entomopathogenic fungi in Ghanaian farms was initiated in 2023.
View Article and Find Full Text PDFAntimicrob Steward Healthc Epidemiol
September 2025
Center for Access and Delivery Research and Evaluation (CADRE), Iowa City VA Healthcare System, Iowa City, IA, USA.
Background: Ultraviolet-C (UV-C) radiation has emerged as a widely adopted disinfection technology in healthcare settings due to its germicidal effectiveness. However, concerns have grown regarding the potential degradation of materials, particularly polymeric surfaces, subjected to repeated UV-C exposure. Understanding the extent, mechanism, and contributing factors of UV-C-induced material degradation is essential for safe and sustainable implementation.
View Article and Find Full Text PDFRev Bras Ortop (Sao Paulo)
June 2025
Instituto Nacional de Traumatologia e Ortopedia Jamil Haddad, Rio de Janeiro, RJ, Brazil.
Objective: The present study aimed to compare the accuracy of the Paprosky Classification of Femoral Bone Loss using plain radiographs and two-dimensional computed tomography (2D CT) images with the femoral defect observed intraoperatively by the surgeon.
Methods: There were 14 hip surgeons from the same hospital who classified 80 patients with an indication for revision hip arthroplasty according to Paprosky based on plain radiographs in anteroposterior views of the pelvis and 2D CT images, reconstructed in the axial, coronal, and sagittal planes. We compared this data with the intraoperative findings of femoral bone loss by the same surgeons.
Rev Bras Ortop (Sao Paulo)
June 2025
Instituto Nacional de Traumatologia e Ortopedia Jamil Haddad, Rio de Janeiro, RJ, Brasil.
Objective: The present study aimed to compare the accuracy of the Paprosky Classification of Femoral Bone Loss using plain radiographs and two-dimensional computed tomography (2D CT) images with the femoral defect observed intraoperatively by the surgeon.
Methods: There were 14 hip surgeons from the same hospital who classified 80 patients with an indication for revision hip arthroplasty according to Paprosky based on plain radiographs in anteroposterior views of the pelvis and 2D CT images, reconstructed in the axial, coronal, and sagittal planes. We compared this data with the intraoperative findings of femoral bone loss by the same surgeons.