Out-of-Plane Soft Lithography for Soft Pneumatic Microactuator Arrays.

Soft Robot

Department of Mechanical Engineering, KU Leuven and Flanders Make, Leuven, Belgium.

Published: February 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Elastic pneumatic actuators are fueling new devices and applications in soft robotics. Actuator miniaturization is critical to enable soft microsystems for applications in microfluidics and micromanipulation. This work proposes a fabrication technique to make out-of-plane bending microactuators entirely by soft lithography. The only bonding step required is to seal the embedded fluidic channels, assuring the structural integrity of the microactuators. The process consists of fabricating two SU8 mold halves using different lithographic layers. Polydimethilsiloxane is poured on the bottom mold, which is subsequently aligned and assembled with the top mold. The process allows for out-of-plane actuators with a diameter of 300 μm and for fabricating arrays of up to 36 actuators that are row addressable. These active micropillars have an aspect ratio of 1:1.5 and, when pressurized at 1 bar, show a bending angle of ∼30°.

Download full-text PDF

Source
http://dx.doi.org/10.1089/soro.2021.0106DOI Listing

Publication Analysis

Top Keywords

soft lithography
8
out-of-plane soft
4
soft
4
lithography soft
4
soft pneumatic
4
pneumatic microactuator
4
microactuator arrays
4
arrays elastic
4
elastic pneumatic
4
pneumatic actuators
4

Similar Publications

Conventional semiconductor manufacturing relies on top-down lithography, which faces fundamental limitations in resolution, material versatility, and cost at the nanoscale. While bottom-up colloidal strategies offer alternative pathways, they are constrained by ligand contamination and insufficient precision for integrated circuits. Here a gas-phase synthesis and assembly platform is reported that overcomes these challenges by combining plasma-generated, stabilizer-free semiconductor nanoparticles (NPs) with electric-field-guided 3D nanoprinting.

View Article and Find Full Text PDF

Microfluidic devices with built-in microvalves hold particular promise for minimizing sample volume requirements while automating sample preparation workflows. Such devices have typically been implemented in polydimethyl siloxane (PDMS) using multi-layer soft lithography. Both the material and assembly process of devices present challenges for scalable manufacturing and limit utilization of microfluidic automation at the point of care.

View Article and Find Full Text PDF

Microfluidic technologies for wearable and implantable biomedical devices.

Lab Chip

September 2025

School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.

Microfluidic technologies are transforming wearable and implantable biomedical devices by enabling precise, real-time analysis and control of biofluids at the microscale. Integrating soft, biocompatible materials with advanced sensing and fabrication techniques, these systems offer promising solutions for continuous health monitoring, targeted drug delivery, and responsive therapeutics. This review outlines critical design considerations, material strategies, and fluid handling mechanisms essential for device performance and biocompatibility.

View Article and Find Full Text PDF

Biopolymer-supported deep eutectic solvent (DES)-based gels, also known as eutectogels, have emerged as promising alternatives to hydrogels and ionic-liquid-based gels for multiple applications in stretchable electronics and sensors due to many key advantages including their high ionic conductivity, tensile toughness, easy handling, simple synthesis, low cost, biocompatibility, and ultralow volatility. Particularly, gelatin-supported 1,2-propanediol (PD)-based eutectogels containing water have shown promise due to their hydrogel-like properties. They have low modulus values and biofriendly components, making them "skin-like" materials.

View Article and Find Full Text PDF

Flexible endoscopes equipped with multimodal sensors offer an innovative minimally invasive approach to perioperative diagnosis and intraoperative ablation monitoring, addressing the limitations of conventional mechanical- and optical-based techniques. Over the years, various miniaturized sensors have been developed, providing essential insights through minimally invasive surgeries (MIS). Among them, tactile sensors hold significant potential to revolutionize the diagnosis of tissue malignancy, serving to detect differences in the mechanical properties between healthy and cancerous tissues.

View Article and Find Full Text PDF