Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Understanding how the morphology of a layered double hydroxide (LDH)-based catalyst alters its catalytic activity provides an available strategy for the rational design and fabrication of high-efficiency catalysts at a micro-scale. Herein, three nickel-iron layered double hydroxide (NiFe-LDH) catalysts including 2D-plate-like hexagon (P-NiFe-LDH), 2D/3D-flower-like solid sphere (FS-NiFe-LDH), and 2D/3D-flower-like hollow sphere (FH-NiFe-LDH) with regulable oxygen vacancies (OVs) were fabricated via a morphological regulation method of Ostwald ripening. The experimental results demonstrated that the three types of NiFe-LDH exhibited different abilities to activate persulfate (PS) for the abatement of acid orange 7 (AO7) with a sequence of FH-NiFe-LDH > FS-NiFe-LDH > P-NiFe-LDH. Particularly, the FH-NiFe-LDH with a hollow structure exhibited the most considerable activity with the first-order rate constant up to k = 0.02639 min, benefiting from the highly accessible surface areas, higher intrinsic activity of the exposed crystal planes, and abundant OVs. Characterizations further confirmed that these properties could profoundly allow for more exposure of active sites and enhance the reactivity of OV-connected Ni or Fe to facilitate electron transfer and generate more reactive radicals, therefore elucidating the morphologic origin of catalytic performance. Based on the quenching experiments, sulfate radicals (SO), hydroxyl radicals (OH), and oxygen radicals (O) were identified to be involved in the decomposition process. Furthermore, the continuous redox cycle of Ni(II)/Ni(III)/Ni(II) and Fe(II)/Fe(III)/Fe(II) was responsible for the generation of active radicals via activating PS.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-21347-yDOI Listing

Publication Analysis

Top Keywords

layered double
12
double hydroxide
12
radicals
5
elucidating origin
4
origin mechanism
4
mechanism morphology-dependent
4
morphology-dependent layered
4
hydroxide catalyst
4
catalyst organic
4
organic contaminant
4

Similar Publications

Herein, 1,3,5-benzenetricarboxylate (BTC) intercalation and oxygen vacancy engineering are proposed to enhance the electrochemical performance of layered double hydroxide (LDH) nanosheets. The optimized LDH exhibits a remarkable capacity of 426 mAh g at 3 A g and 70% capacity retention after 15 000 cycles, attributed to improved ion transport, abundant active sites, and structural stability.

View Article and Find Full Text PDF

Controlling the Regioselectivity of Topochemical Reduction Reactions Through Sequential Anion Insertion and Extraction.

Angew Chem Int Ed Engl

September 2025

Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.

Topochemical reduction of the n = 2 Ruddlesden-Popper oxide, LaSrCoRuO, yields LaSrCoRuO, a phase containing (Co/Ru)O squares which share corners to form 1D infinite double-chains. In contrast, fluorination of LaSrCoRuO yields the oxyfluoride LaSrCoRuOF, which can then be reduced to form LaSrCoRuOF. This reduced oxyfluoride is almost isoelectronic with LaSrCoRuO, but LaSrCoRuOF has a crystal structure in which the (Co/Ru)O squares are connected into 2D infinite sheets.

View Article and Find Full Text PDF

Minimally invasive pancreaticoduodenectomy is gaining success among surgeons also for the increasing use of robotic approach. Ideal candidates are patients with small, confined tumor and dilatated Wirsung duct which is a quite rare clinical conditions: in fact, most of minimally invasive pancreaticoduodenectomies are performed for periampullary cancer, easy to remove but with soft pancreatic remnant and tiny Wirsung duct. The result is the technical challenge of the pancreatico-enteric reconstructions.

View Article and Find Full Text PDF

Room temperature ionic liquids show great promise as electrolytes in various technological applications, such as energy storage or electrotunable lubrication. These applications are particularly intriguing due to the specific behavior of ionic liquids in nanoconfinement. While previous research has been focused on optimizing the required characteristics through the selection of electrolyte properties, the contribution of confining material properties in these systems has been largely overlooked.

View Article and Find Full Text PDF

Neuroinflammation, a vital protective response for tissue homeostasis, becomes a detrimental force when chronic and dysregulated, driving neurological disorders like Alzheimer's, Parkinson's, and Huntington's diseases. Potassium (K) channels maintain membrane potential and cellular excitability in neurons and glia within the intricate CNS signaling network. Neuronal injury or inflammation can disrupt K channel activity, leading to hyperexcitability and chronic pain.

View Article and Find Full Text PDF