98%
921
2 minutes
20
Ultraviolet radiation (UV, 280-400 nm) as an environmental signal triggers metabolic acclimatory responses. However, how different light qualities affect UV acclimation during growth is poorly understood. Here, cucumber plants (Cucumis sativus) were grown under blue, green, red, or white light in combination with UV. Their effects on leaf metabolites were determined using untargeted metabolomics. Blue and white growth light triggered increased levels of compounds related to primary and secondary metabolism, including amino acids, phenolics, hormones, and compounds related to sugar metabolism and the TCA cycle. In contrast, supplementary UV in a blue or white light background decreased leaf content of amino acids, phenolics, sugars, and TCA-related compounds, without affecting abscisic acid, auxin, zeatin, or jasmonic acid levels. However, in plants grown under green light, UV induced increased levels of phenolics, hormones (auxin, zeatin, dihydrozeatin-7-N-dihydrozeatin, jasmonic acid), amino acids, sugars, and TCA cycle-related compounds. Plants grown under red light with UV mainly showed decreased sugar content. These findings highlight the importance of the blue light component for metabolite accumulation. Also, data on interactions of UV with green light on the one hand, and blue or white light on the other, further contributes to our understanding of light quality regulation of plant metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2022.111326 | DOI Listing |
J Org Chem
September 2025
College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan 473061, China.
A visible-light-induced cascade cyclization of isocyanobiaryls with hydrosilanes has been developed for the synthesis of 6-silylated phenanthridines. Readily available hydrosilanes were employed as silyl radical precursors under room-temperature conditions. The merits of the transformation include operational simplicity, mild conditions, high atom economy, and good functional group compatibility.
View Article and Find Full Text PDFAnnu Rev Microbiol
September 2025
Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada; email:
The ability to synthesize lichen symbioses in vitro from pure cultures of transformable symbionts would be a game changer for experiments to identify the metabolic interplay that underpins the success of lichens. However, despite multiple reports of successful lichen resynthesis, no lichen lab model system exists today. We reviewed 150 years of in vitro lichen studies and found that the term resynthesis is applied to many types of fungal-photobiont cocultures that do not resemble lichens.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.
The activation of methane and other gaseous hydrocarbons at low temperature remains a substantial challenge for the chemistry community. Here, we report an anaerobic photosystem based on crystalline borocarbonitride (BCN) supported Fe-O nanoclusters, which can selectively functionalize C-H bonds of methane, ethane, and higher alkanes to value-added organic chemicals at 12 °C. Scanning transmission electron microscopy and X-ray absorption spectroscopy corroborated the ultrafine FeOOH and FeO species in Fe-O clusters, which enhanced the interfacial charge transfer/separation of BCN as well as the chemisorption of methane.
View Article and Find Full Text PDFInorg Chem
September 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
Photocatalysis has emerged as a promising strategy to address water pollution caused by heavy metals and antibiotics. Zeolites exhibit significant potential in petrochemical catalysis; however, the development of zeolite-based photocatalysts remains a critical challenge for researchers. Herein, a novel Z-scheme heterojunction was designed and fabricated on the titanium-silicon zeolite TS-1 by modifying g-CN via a simple calcination process.
View Article and Find Full Text PDFCuad Bioet
September 2025
Universidad Francisco de Vitoria. Pozuelo de Alarcón Madrid. España.
This article examines the ethical challenges posed by NBIC emerging and converging technologies (na-notechnology, biotechnology, artificial intelligence and information technologies, and cognitive sciences) from the perspective of personalist bioethics. Their biomedical and social applications are described, high-lighting the main values at stake: dignity, life, autonomy, vulnerability, and justice. Finally, guidelines are proposed, inspired by the principles of personalist bioethics: defense of human life, therapeutic totality, responsible freedom, and justice, to ensure that technological development remains at the service of the person and the common good.
View Article and Find Full Text PDF