SERS-active nanocellulose substrate via in-situ photochemical synthesis.

Int J Biol Macromol

Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Published: August 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Surface-enhanced Raman scattering spectroscopy (SERS) is a highly-sensitive technology to detect trace target analytes. Herein, a series of flexible SERS substrate for the detection of malachite green (MG) bactericide were developed via in situ photochemical synthesis of silver nanoparticles (AgNPs) based on two dimentional (2D) nanocellulose film without additional reducing agent. For the first time, silver nanocubes (AgNCs) with sharp edges and corners, which are conductive to the formation of hot spots, were successfully prepared and uniformly loaded on the nanocellulose film by controlling the reaction conditions. The obtained composite SERS substrate showed high sensitivity to Rhodamine 6G (R6G) and MG with limit of detection (LOD) of 4.7 × 10 and 1.2 × 10 g/L, respectively. In addition, the relative standard deviation (RSD) was calculated lower than 15 %, demonstrating the good detection reproducibility. The nanocellulose-based 2D SERS substrate shows the potential as a detection platform in the rapid and sensitive identification of various toxic and harmful pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2022.06.036DOI Listing

Publication Analysis

Top Keywords

sers substrate
12
photochemical synthesis
8
nanocellulose film
8
sers-active nanocellulose
4
substrate
4
nanocellulose substrate
4
substrate in-situ
4
in-situ photochemical
4
synthesis surface-enhanced
4
surface-enhanced raman
4

Similar Publications

Investigation into the Regulation of Ag NPs/ZnO NRs/GaN Heterostructure SERS Substrate via Pyroelectric Effects.

J Phys Chem Lett

September 2025

Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, P.R. China.

Heterostructures have emerged as promising contenders for surface-enhanced Raman scattering (SERS) applications. Nevertheless, the construction of a composite SERS substrate with well-matched energy levels persists as a challenge, primarily due to the restricted selection of SERS-active materials. In this study, we successfully synthesized a Ag nanoparticles (NPs)/ZnO nanorods (NRs)/GaN heterojunction featuring type II staggered energy bands, which provides an outstanding platform for efficient SERS detection.

View Article and Find Full Text PDF

The demand for rapid, field-deployable detection of hazardous substances has intensified the search for plasmonic sensors with both high sensitivity and fabrication simplicity. Conventional approaches to plasmonic substrates, however, often rely on lithographic precision or complex chemistries limiting scalability and reproducibility. Here, a facile, one-step synthesis of vertically aligned 2D nanosheets composed of intergrown CuO/CuO crystallites is presented, fabricated via oxygen plasma discharge on copper substrates.

View Article and Find Full Text PDF

Laser processing in liquids: insights into nanocolloid generation and thin film integration for energy, photonic, and sensing applications.

Beilstein J Nanotechnol

August 2025

Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León. San Nicolás de los Garza, Nuevo León, 66455, México.

Nanoparticles in their pure colloidal form synthesized by laser-assisted processes such as laser ablation/fragmentation/irradiation/melting in liquids have attained much interest from the scientific community because of their specialties like facile synthesis, ultra-high purity, biocompatibility, colloidal stability in addition to other benefits like tunable size and morphology, crystalline phases, new compounds and alloys, and defect engineering. These nanocolloids are useful for fabricating different devices mainly with applications in optoelectronics, catalysis, sensors, photodetectors, surface-enhanced Raman spectroscopy (SERS) substrates, and solar cells. In this review article, we describe different methods of nanocolloidal synthesis using laser-assisted processes and corresponding thin film fabrication methods, particularly those utilized for device fabrication and characterization.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) has shown potential for early disease diagnosis via urinary metabolomics, but still faces challenges in achieving stable hot spots and processing complex clinical data. In this study, the preparation of chiral gold nanostars with precisely controllable branch size, number, and sharpness was realized by investigating the effects of l-GSH and CTA ( indicates halides) on site occupancy, reduction rate, and selective adsorption on crystal facets. Raman spectroscopic characterization using rhodamine 6G (R6G) as a reporter molecule revealed that nanoparticles with fewer branches, larger branch bases, and smoother surfaces exhibited excellent SERS activity, with an analytical enhancement factor (AEF) of 5.

View Article and Find Full Text PDF

This study demonstrates the successful fabrication of nanostructured Langmuir-Blodgett (LB) films combining the conjugated copolymer poly(9,9-dioctylfluorene--3,4-ethylenedioxythiophene) (PDOF--PEDOT) with spherical and triangular silver nanoparticles (AgNP). The LB technique allowed precise control over the molecular arrangement and distribution of the nanoparticles at the air-water interface, resulting in compact, reproducible and structurally ordered nanocomposite films. The structural and morphological properties of the interfacial monolayers and LB films were investigated using surface pressure-area isotherms, Brewster angle microscopy, polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and quartz crystal microbalance.

View Article and Find Full Text PDF