98%
921
2 minutes
20
Current trends in data processing have given impetus for an intense search of new concepts of memory devices with emphasis on efficiency, speed, and scalability. A promising new approach to memory storage is based on resistance switching between charge-ordered domain states in the layered dichalcogenide 1T-TaS. Here we investigate the energy efficiency scaling of such charge configuration memory (CCM) devices as a function of device size and data write time τ as well as other parameters that have bearing on efficient device operation. We find that switching energy efficiency scales approximately linearly with both quantities over multiple decades, departing from linearity only when τ approaches the ∼0.5 ps intrinsic switching limit. Compared to current state of the art memory devices, CCM devices are found to be much faster and significantly more energy efficient, demonstrated here with two-terminal switching using 2.2 fJ, 16 ps electrical pulses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228410 | PMC |
http://dx.doi.org/10.1021/acs.nanolett.2c01116 | DOI Listing |
J Colloid Interface Sci
September 2025
School of Electronic Information & Artificial Intelligence, Shaanxi University of Science and Technology, Xi'an 710021, China.
The integration of information memory and computing enabled by nonvolatile memristive device has been widely acknowledged as a critical solution to circumvent the von Neumann architecture limitations. Herein, the Au/NiO/CaBiTiO/FTO (CBTi/NiO) heterojunction based memristor with varying film thicknesses are demonstrated on FTO/glass substrates, and the CBTi/NiO-4 sample shows the optimal memristor characteristics with 5 × 10 stable switching cycles and 10-s resistance state retention. The electrical conduction in the low-resistance state is dominated by Ohmic behavior, while the high-resistance state exhibited characteristics consistent with the space-charge-limited conduction (SCLC) model.
View Article and Find Full Text PDFSmall
September 2025
Phonon Engineering Research Center of Jiangsu Province, Center for Quantum Transport and Thermal Energy Science, Institute of Physics Frontiers and Interdisciplinary Sciences, School of Physics and Technology, Nanjing Normal University, Nanjing, 210023, China.
As a 2D material with distinctive ferroelectric properties, InSe offers significant potential for the applications in information memory and advanced data storage technologies. It also exhibits a complex phase diagram that is highly sensitive to temperature and pressure variations, resulting in diverse lattice configurations. While extensive studies have focused on the phase transition behavior of InSe, its impact on phonon transport remains largely unexplored.
View Article and Find Full Text PDFChaos
September 2025
School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, China.
Synaptic plasticity is of great significance for understanding the leaning and memory processes in different brain regions since it determines the synchronized firing activities of neurons. A volatility-switchable memristor-coupled heterogeneous neuron model is proposed to explore the effects of the synaptic plasticity on the synchronous dynamics of coupled neurons in different brain regions. With the increment of the non-volatility, the critical coupling strength of synchronization between two heterogeneous neurons decreases in a power-law relationship with the character parameter of the memristor.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.
Two-dimensional ferroelectric tunnel junctions (2D FTJs) have attracted extensive attention in recent years, which mainly change the height of the tunnel barrier via manipulation of the ferroelectric polarization. However, it is very challenging to realize the high tunneling electroresistance (TER) of FTJs based on the barrier height. Here, we report the 2D FTJs using a unique structure with semiconducting MoS/α-InSe/monolayer graphene, where ferroelectric polarization of α-InSe shifts the barrier height by 1.
View Article and Find Full Text PDFFront Med (Lausanne)
August 2025
Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia.
Introduction: Social media is increasingly used in many contexts within the healthcare sector. The improved prevalence of Internet use via computers or mobile devices presents an opportunity for social media to serve as a tool for the rapid and direct distribution of essential health information. Autism spectrum disorders (ASD) are a comprehensive neurodevelopmental syndrome with enduring effects.
View Article and Find Full Text PDF