98%
921
2 minutes
20
The APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) family-mediated mutagenesis is widespread in human cancers. However, our knowledge of the biological feature and clinical relevance of APOBECs and APOBEC mutagenesis in cancers remains limited. In this study, with a series of bioinformatic and statistical approaches, we performed a comprehensive analysis of multiple levels of data, including whole-exome sequencing (WES) and targeted next-generation sequencing (NGS), transcriptome (bulk RNA-seq and single-cell RNA-seq), immune signatures and immune checkpoint blockade (ICB) potential, patient survival and drug sensitivity, to reveal the distribution characteristics and clinical significance of APOBECs and APOBEC mutagenesis in pan-cancer especially bladder cancer (BLCA). APOBEC mutagenesis dominates in the mutational patterns of BLCA. A higher enrichment score of APOBEC mutagenesis correlates with favorable prognosis, immune activation and potential ICB response in BLCA patients. APOBEC3A and 3B play a significant role in the malignant progression and cell differentiation within the tumor microenvironment. Furthermore, using machine learning approaches, a prognostic APOBEC mutagenesis-related model was established and validated in different BLCA cohorts. Our study illustrates the characterization of APOBECs and APOBEC mutagenesis in multiple cancer types and highlights its potential value as a promising biomarker for prognosis and immunotherapy in BLCA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9169361 | PMC |
http://dx.doi.org/10.7150/thno.73235 | DOI Listing |
Genome Res
August 2025
Korea Advanced Institute of Science and Technology (KAIST), Inocras Inc.;
Cancer genomes frequently carry APOBEC (apolipoprotein B mRNA editing catalytic polypeptide-like)-associated DNA mutations, suggesting APOBEC enzymes as innate mutagens during cancer initiation and evolution. However, the pure mutagenic impacts of the specific enzymes among this family remain unclear in human normal cell lineages. Here, we investigated the comparative mutagenic activities of and , through whole-genome sequencing of human normal gastric organoid lines carrying doxycycline-inducible APOBEC expression cassettes.
View Article and Find Full Text PDFCell Res
August 2025
State Key Laboratory of Genome and Multi-omics Technologies, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultu
The vast scope but limited-supporting evidence in sequence databases hinders identification of proteins with specific functionality. Here, we experimentally characterized catalytic efficiency, target site window, motif preference, and off-target activity of 1100 apolipoprotein B mRNA-editing enzyme, catalytic polypeptide (APOBEC)-like family cytidine deaminases (CDs) fused with nCas9 in HEK293T cells, thereby generating the largest dataset of experimentally validated functions for a single protein family to date. These data, together with amino acid sequence, three-dimensional structure, and eight additional features, were used to construct a machine learning (ML) model, AlphaCD, which showed high accuracy in predicting catalytic efficiency (0.
View Article and Find Full Text PDFGenomics
August 2025
Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Pain Management, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China. Elec
Background: APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) family-mediated mutagenesis is widespread in human cancers. However, we still have a limited understanding of the biological features and clinical relevance of APOBEC mutagenesis in cancer, particularly in pancreatic cancer.
Methods: In this study, we conducted a comprehensive analysis of various data, including whole-exome sequencing (WES), targeted next-generation sequencing (NGS), transcriptome analysis (both bulk RNA-seq and single-cell RNA-seq), immune profiling, immune checkpoint blockade (ICB) response, patient survival, and drug sensitivity.
NPJ Precis Oncol
August 2025
Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Tumor mutational burden (TMB) has emerged as a potential surrogate for neoantigen load and an indicator of immune checkpoint (IC)-blockade response; however, its precise significance in breast cancer (BC) is not fully understood. Here, we comprehensively characterized the genomic repertoire of BCs with a TMB ≥ 10 mut/Mb (TMB-high [n = 527]) to identify putative predictors of importance. The predominant mutational signature was apolipoprotein B mRNA-editing enzyme catalytic polypeptide (APOBEC) in 64.
View Article and Find Full Text PDFBiol Proced Online
July 2025
Department of Thyroid and Neck Tumor, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
Background: The APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) family plays a vital mutagenic role in diverse human malignancies. Nevertheless, the biological characteristics of APOBEC family members and their clinical significance in cancer have not been comprehensively explored. Our primary objective was to characterize the distribution and clinical relevance of APOBEC family members and their mutations across multiple cancer types, with a particular focus on thyroid carcinoma (THCA).
View Article and Find Full Text PDF