Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Multiple sclerosis (MS) is an autoimmune condition of the central nervous system with a well-characterized genetic background. Prior analyses of MS genetics have identified broad enrichments across peripheral immune cells, yet the driver immune subsets are unclear.

Results: We utilize chromatin accessibility data across hematopoietic cells to identify cell type-specific enrichments of MS genetic signals. We find that CD4 T and B cells are independently enriched for MS genetics and further refine the driver subsets to T17 and memory B cells, respectively. We replicate our findings in data from untreated and treated MS patients and find that immunomodulatory treatments suppress chromatin accessibility at driver cell types. Integration of statistical fine-mapping and chromatin interactions nominate numerous putative causal genes, illustrating complex interplay between shared and cell-specific genes.

Conclusions: Overall, our study finds that open chromatin regions in CD4 T cells and B cells independently drive MS genetic signals. Our study highlights how careful integration of genetics and epigenetics can provide fine-scale insights into causal cell types and nominate new genes and pathways for disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9175345PMC
http://dx.doi.org/10.1186/s13059-022-02694-yDOI Listing

Publication Analysis

Top Keywords

multiple sclerosis
8
cells driver
8
driver cell
8
chromatin accessibility
8
genetic signals
8
cd4 cells
8
cells independently
8
cell types
8
cells
7
dissection multiple
4

Similar Publications

Description of a patient with multiple sclerosis (MS) who underwent immunotherapy with ocrelizumab and suffered a severe course of tick-borne encephalitis (TBE): A 33-year-old man presented with acute cerebellitis with tonsillar herniation. The initial suspected diagnosis of TBE was confirmed after a significant diagnostic delay, likely caused by negative serological testing due to B-cell depletion from ocrelizumab treatment for underlying MS. TBE diagnosis was made using polymerase chain reaction (PCR) and oligo-hybrid capture metagenomic next-generation sequencing (mNGS) of cerebral spinal fluid and brain biopsy samples which yielded a near-full length TBE Virus (TBEV) genome.

View Article and Find Full Text PDF

Neuroinflammation has emerged as a central and dynamic component of the pathophysiology underlying a wide range of neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, and multiple sclerosis. Far from being a secondary consequence of neuronal damage, inflammatory processes (mediated by microglia, astrocytes, peripheral immune cells, and associated molecular mediators) actively shape disease onset, progression, and symptomatology. This review synthesizes current knowledge on the cellular and molecular mechanisms that govern neuroinflammatory responses, emphasizing both shared and disease-specific pathways.

View Article and Find Full Text PDF

Proteasome 20S beta 8 (PSMB8) as a metabolic switcher of neuronal ferroptosis in multiple sclerosis.

Cell Death Differ

September 2025

Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.

View Article and Find Full Text PDF