Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

SMYD2, as an oncogene, has been involved in multiple types of cancer, but the potential role of SMYD2 in gastrointestinal stromal tumors (GIST) remains enigmatic and requires further investigation. Hence, this study was conducted with the main objective of analyzing the effect of SMYD2 on GIST. GIST and adjacent normal tissues were collected from 46 patients with GIST where the expression of EZH2, SMYD2, and TET1 was determined, followed by the analysis of their interactions. The functional role of SMYD2 in cell biological functions was determined using a loss-of-function assay in GIST-T1 cells. Nude mouse xenograft experiments were performed to verify the role of the SMYD2/EZH2/TET1 axis in GIST in vivo. EZH2 was upregulated in GIST tissues and cell lines, which was positively correlated with SMYD2 expression and inversely correlated with TET1 expression in GIST tissues. EZH2 silencing due to SMYD2 inhibition reduced GIST-T1 cell proliferation and accelerated cell senescence. EZH2 repressed TET1 expression by promoting H3K27me3 methylation in the TET1 promoter region. TET1 inhibition reversed the effect of EZH2 silencing on the biological functions of GIST-T1 cells. In vivo data further revealed the promoting effect of SMYD2 on the progression of GIST by regulating the EZH2/TET1 axis. Overall, this study demonstrates that SMYD2 can increase EZH2 expression while suppressing TET1 expression, thus accelerating GIST, and creating new treatment opportunities for GIST.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9170715PMC
http://dx.doi.org/10.1038/s41420-022-01038-wDOI Listing

Publication Analysis

Top Keywords

tet1 expression
12
smyd2
10
gist
10
gastrointestinal stromal
8
role smyd2
8
biological functions
8
gist-t1 cells
8
gist tissues
8
ezh2 silencing
8
ezh2
7

Similar Publications

Study Question: What is the effect of hCG on the epigenetic profile and the expression of other molecular factors in endometrial stromal cells (ESCs)?

Summary Answer: Our findings suggest that hCG treatment alters the molecular environment of decidualized ESCs, potentially influencing implantation and immune regulation through epigenetic modifications and changes in the levels of secreted proteins and micro-ribonucleic acids (miRNAs).

What Is Known Already: Embryo implantation depends not only on the quality of the embryo but also on the receptivity of the endometrium, the specialized lining of the uterus that undergoes dynamic changes to support pregnancy. Effective communication between the maternal and fetal compartments, facilitated by molecular signals and cellular interactions, is essential for successful implantation.

View Article and Find Full Text PDF

Ten Eleven Translocation (TET) proteins can oxidize 5-methylcytosine to generate in sequential steps oxidized forms of cytosine: 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine. Through their catalytic activity TET proteins promote active DNA demethylation. There are three TET proteins: TET1, TET2 and TET3.

View Article and Find Full Text PDF

Epigenetic modulation of BARD1 to enhance anti-VEGF therapy.

Cell Rep Med

August 2025

Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. Electronic address:

Despite the clinical use of anti-vascular endothelial growth factor (VEGF) antibodies (AVAs) in cancer therapy, resistance frequently develops, leading to disease progression. To address this, we identify a previously unknown role for breast cancer type 1 susceptibility protein (BRCA1)-associated RING domain 1 (BARD1) in modulating AVA sensitivity. Epigenetic modulation-via global and targeted DNA methylation-reveals BARD1 as a key regulator of angiogenesis.

View Article and Find Full Text PDF

NUTM2A-AS1 is an emerging long noncoding RNA (lncRNA) that has garnered significant attention due to its multifaceted roles in cancer biology. As a member of the ceRNA network, NUTM2A-AS1 modulates gene expression by sequestering microRNAs, thereby influencing key oncogenic pathways. This review aims to provide a comprehensive overview of the current understanding of NUTM2A-AS1 in the development, progression, and metastasis of various cancers, including gastric cancer, hepatocellular carcinoma, neuroblastoma, colorectal cancer, glioma, lung adenocarcinoma, prostate cancer, and renal cell carcinoma.

View Article and Find Full Text PDF

Programmable epigenome editors modify gene expression in mammalian cells by altering the local chromatin environment at target loci without inducing DNA breaks. However, the large size of CRISPR-based epigenome editors poses a challenge to their broad use in biomedical research and as future therapies. Here, we present Robust ENveloped Delivery of Epigenome-editor Ribonucleoproteins (RENDER) for transiently delivering programmable epigenetic repressors (CRISPRi, DNMT3A-3L-dCas9, CRISPRoff) and activator (TET1-dCas9) as ribonucleoprotein complexes into human cells to modulate gene expression.

View Article and Find Full Text PDF