98%
921
2 minutes
20
Programmable epigenome editors modify gene expression in mammalian cells by altering the local chromatin environment at target loci without inducing DNA breaks. However, the large size of CRISPR-based epigenome editors poses a challenge to their broad use in biomedical research and as future therapies. Here, we present Robust ENveloped Delivery of Epigenome-editor Ribonucleoproteins (RENDER) for transiently delivering programmable epigenetic repressors (CRISPRi, DNMT3A-3L-dCas9, CRISPRoff) and activator (TET1-dCas9) as ribonucleoprotein complexes into human cells to modulate gene expression. After rational engineering, we show that RENDER induces durable epigenetic silencing of endogenous genes across various human cell types, including primary T cells. Additionally, we apply RENDER to epigenetically repress endogenous genes in human stem cell-derived neurons, including the reduction of the neurodegenerative disease associated V337M-mutated Tau protein. Together, our RENDER platform advances the delivery of CRISPR-based epigenome editors into human cells, broadening the use of epigenome editing in fundamental research and therapeutic applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12381050 | PMC |
http://dx.doi.org/10.1038/s41467-025-63167-x | DOI Listing |
J Assoc Res Otolaryngol
September 2025
Department of Anesthesiology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
Purpose: The mammalian cochlea has two types of low abundance and highly specialized inner (IHC) and outer (OHC) mechanosensory hair cells. Their malfunction or death is a common cause of congenital and acquired deafness. IHCs and OHCs exhibit different transcriptomes during development.
View Article and Find Full Text PDFGenome Biol
September 2025
Department of Genetics, The Alexander Silberman Institute of Life Sciences, Faculty of Science, the Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
We present a new and considerably improved version of RoAM (Reconstruction of Ancient Methylation), a flexible tool for reconstructing ancient methylomes and identifying differentially methylated regions (DMRs) between populations. Through a series of filtering and quality control steps, RoAM produces highly reliable DNA methylation maps, making it a valuable tool for paleoepigenomics studies. We apply RoAM to pre-and post-Neolithic transition Balkan samples, and uncover DMRs in genes related to sugar metabolism.
View Article and Find Full Text PDFMol Ther Nucleic Acids
September 2025
BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Republic of Korea.
Mitochondrial DNA (mtDNA) base editors are powerful tools for investigating mitochondrial diseases. However, their editing efficiency can vary significantly depending on the target site within the mtDNA. In this study, we developed two improved versions of the mitochondrial adenine base editor (Hifi-sTALED and αnHifi-sTALED) by modifying components other than the TadA8e-V28R deaminase variant.
View Article and Find Full Text PDFJ Headache Pain
September 2025
Faculty of Medicine, Collegium Medicum, The Mazovian University in Plock, Plock, 09-402, Poland.
Background: Epigenetic studies in migraine provided results on the occurrence or lack of epigenetic modifications of genes whose products are important in migraine pathogenesis. However, these studies focus on single genes without analyzing how epigenetic modifications can affect complex signaling pathways. This narrative/hypothesis review aims to provide information on how the reactive oxygen and nitrogen species (RONS)-transient receptor potential cation channel subfamily A member 1 (TRPA1)-calcitonin gene-related peptide (CGRP) axis functions, suggesting that its epigenetic modifications could be a significant factor in migraine pathophysiology.
View Article and Find Full Text PDFNat Commun
August 2025
Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
Programmable epigenome editors modify gene expression in mammalian cells by altering the local chromatin environment at target loci without inducing DNA breaks. However, the large size of CRISPR-based epigenome editors poses a challenge to their broad use in biomedical research and as future therapies. Here, we present Robust ENveloped Delivery of Epigenome-editor Ribonucleoproteins (RENDER) for transiently delivering programmable epigenetic repressors (CRISPRi, DNMT3A-3L-dCas9, CRISPRoff) and activator (TET1-dCas9) as ribonucleoprotein complexes into human cells to modulate gene expression.
View Article and Find Full Text PDF