98%
921
2 minutes
20
Purpose: Computer-assisted techniques play an important role in craniomaxillofacial surgery. As segmentation of three-dimensional medical imaging represents a cornerstone for these procedures, the present study was aiming at investigating a deep learning approach for automated segmentation of head CT scans.
Methods: The deep learning approach of this study was based on the patchwork toolbox, using a multiscale stack of 3D convolutional neural networks. The images were split into nested patches using a fixed 3D matrix size with decreasing physical size in a pyramid format of four scale depths. Manual segmentation of 18 craniomaxillofacial structures was performed in 20 CT scans, of which 15 were used for the training of the deep learning network and five were used for validation of the results of automated segmentation. Segmentation accuracy was evaluated by Dice similarity coefficient (DSC), surface DSC, 95% Hausdorff distance (95HD) and average symmetric surface distance (ASSD).
Results: Mean for DSC was 0.81 ± 0.13 (range: 0.61 [mental foramen] - 0.98 [mandible]). Mean Surface DSC was 0.94 ± 0.06 (range: 0.87 [mental foramen] - 0.99 [mandible]), with values > 0.9 for all structures but the mental foramen. Mean 95HD was 1.93 ± 2.05 mm (range: 1.00 [mandible] - 4.12 mm [maxillary sinus]) and for ASSD, a mean of 0.42 ± 0.44 mm (range: 0.09 [mandible] - 1.19 mm [mental foramen]) was found, with values < 1 mm for all structures but the mental foramen.
Conclusion: In this study, high accuracy of automated segmentation of a variety of craniomaxillofacial structures could be demonstrated, suggesting this approach to be suitable for the incorporation into a computer-assisted craniomaxillofacial surgery workflow. The small amount of training data required and the flexibility of an open source-based network architecture enable a broad variety of clinical and research applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9515026 | PMC |
http://dx.doi.org/10.1007/s11548-022-02673-5 | DOI Listing |
J Imaging Inform Med
September 2025
Department of Biomedical Engineering, Gachon University, Seongnam-Si 13120, Gyeonggi-Do, Republic of Korea.
To develop and validate a deep-learning-based algorithm for automatic identification of anatomical landmarks and calculating femoral and tibial version angles (FTT angles) on lower-extremity CT scans. In this IRB-approved, retrospective study, lower-extremity CT scans from 270 adult patients (median age, 69 years; female to male ratio, 235:35) were analyzed. CT data were preprocessed using contrast-limited adaptive histogram equalization and RGB superposition to enhance tissue boundary distinction.
View Article and Find Full Text PDFNat Methods
September 2025
Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, UK.
Volume correlative light and electron microscopy (vCLEM) is a powerful imaging technique that enables the visualization of fluorescently labeled proteins within their ultrastructural context. Currently, vCLEM alignment relies on time-consuming and subjective manual methods. This paper presents CLEM-Reg, an algorithm that automates the three-dimensional alignment of vCLEM datasets by leveraging probabilistic point cloud registration techniques.
View Article and Find Full Text PDFCell Rep Methods
September 2025
Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland; Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland. Electronic address:
In cancer research, multiplexed imaging allows detailed characterization of the tumor microenvironment (TME) and its link to patient prognosis. The integrated immunoprofiling of large adaptive cancer patient cohorts (IMMUcan) consortium collects multi-modal imaging data from thousands of patients with cancer to perform broad molecular and cellular spatial profiling. Here, we describe and compare two workflows for multiplexed immunofluorescence (mIF) and imaging mass cytometry (IMC) developed within IMMUcan to enable the generation of standardized data for cancer tissue analysis.
View Article and Find Full Text PDFComput Methods Programs Biomed
August 2025
The Institute of Cancer Research, London, UK. Electronic address:
Background And Objective: Apparent Diffusion Coefficient (ADC) values and Total Diffusion Volume (TDV) from Whole-body diffusion-weighted MRI (WB-DWI) are recognised cancer imaging biomarkers. However, manual disease delineation for ADC and TDV measurements is unfeasible in clinical practice, demanding automation. As a first step, we propose an algorithm to generate fast and reproducible probability maps of the skeleton, adjacent internal organs (liver, spleen, urinary bladder, and kidneys), and spinal canal.
View Article and Find Full Text PDFBioinformatics
September 2025
Biocomputation and Complex Systems Physics Institute (BIFI)-Joint Unit GBsC-CSIC, University of Zaragoza, Zaragoza, 50018, Spain.
Motivation: The stability of protein interfaces influences protein dynamics and unfolding cooperativity. Although in some cases the dynamics of proteins can be deduced from their topology, much of the stability of an interface is related to the complementarity of the interacting parts. It is also important to note that proteins that display non-cooperative unfolding cannot be rationally stabilized unless the regions that unfold first are known.
View Article and Find Full Text PDF