98%
921
2 minutes
20
Background: It is estimated that up to 50% of all disease causing variants disrupt splicing. Due to its complexity, our ability to predict which variants disrupt splicing is limited, meaning missed diagnoses for patients. The emergence of machine learning for targeted medicine holds great potential to improve prediction of splice disrupting variants. The recently published SpliceAI algorithm utilises deep neural networks and has been reported to have a greater accuracy than other commonly used methods.
Methods And Findings: The original SpliceAI was trained on splice sites included in primary isoforms combined with novel junctions observed in GTEx data, which might introduce noise and de-correlate the machine learning input with its output. Limiting the data to only validated and manual annotated primary and alternatively spliced GENCODE sites in training may improve predictive abilities. All of these gene isoforms were collapsed (aggregated into one pseudo-isoform) and the SpliceAI architecture was retrained (CI-SpliceAI). Predictive performance on a newly curated dataset of 1,316 functionally validated variants from the literature was compared with the original SpliceAI, alongside MMSplice, MaxEntScan, and SQUIRLS. Both SpliceAI algorithms outperformed the other methods, with the original SpliceAI achieving an accuracy of ∼91%, and CI-SpliceAI showing an improvement at ∼92% overall. Predictive accuracy increased in the majority of curated variants.
Conclusions: We show that including only manually annotated alternatively spliced sites in training data improves prediction of clinically relevant variants, and highlight avenues for further performance improvements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9165884 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0269159 | PLOS |
Stroke
September 2025
Department of Neurology, Yale School of Medicine, New Haven, CT (L.H.S.).
Preclinical stroke research faces a critical translational gap, with animal studies failing to reliably predict clinical efficacy. To address this, the field is moving toward rigorous, multicenter preclinical randomized controlled trials (mpRCTs) that mimic phase 3 clinical trials in several key components. This collective statement, derived from experts involved in mpRCTs, outlines considerations for designing and executing such trials.
View Article and Find Full Text PDFF1000Res
September 2025
Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QR, UK.
Background: Subcellular localisation is a determining factor of protein function. Mass spectrometry-based correlation profiling experiments facilitate the classification of protein subcellular localisation on a proteome-wide scale. In turn, static localisations can be compared across conditions to identify differential protein localisation events.
View Article and Find Full Text PDFAnal Methods
September 2025
College of Science, Kunming University of Science and Technology, Kunming, 650500, China.
To address the technical challenges associated with determining the chronological order of overlapping stamps and textual content in forensic document examination, this study proposes a novel non-destructive method that integrates hyperspectral imaging (HSI) with convolutional neural networks (CNNs). A multi-type cross-sequence dataset was constructed, comprising 60 samples of handwriting-stamp sequences and 20 samples of printed text-stamp sequences, all subjected to six months of natural aging. Spectral responses were collected across the 400-1000 nm range in the overlapping regions.
View Article and Find Full Text PDFPeriodontol 2000
September 2025
Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
Oral cancer is a major global health burden, ranking sixth in prevalence, with oral squamous cell carcinoma (OSCC) being the most common type. Importantly, OSCC is often diagnosed at late stages, underscoring the need for innovative methods for early detection. The oral microbiome, an active microbial community within the oral cavity, holds promise as a biomarker for the prediction and progression of cancer.
View Article and Find Full Text PDFHum Brain Mapp
September 2025
Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany.
Postoperative aphasia (POA) is a common complication in patients undergoing surgery for language-eloquent lesions. This study aimed to enhance the prediction of POA by leveraging preoperative navigated transcranial magnetic stimulation (nTMS) language mapping and diffusion tensor imaging (DTI)-based tractography, incorporating deep learning (DL) algorithms. One hundred patients with left-hemispheric lesions were retrospectively enrolled (43 developed postoperative aphasia, as the POA group; 57 did not, as the non-aphasia (NA) group).
View Article and Find Full Text PDF