Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Atherosclerosis is a chronic inflammatory disease. The triggering receptor expressed on myeloid cells-1 (TREM-1) plays a crucial role in inflammatory diseases; recently, it was identified as a major upstream proatherogenic receptor, but its mechanism is still unclear. In this study, we explore the role of TREM-1 on dendritic cells maturation and inflammatory responses induced by ox-LDL and its possible mechanism. Human dendritic cells were differentiated from blood monocytes and treated with ox-LDL. Naive autologous T cells were cocultured with pretreated DCs or treated directly. The expression of TREM-1 and inflammatory factors were evaluated by real-time PCR, western blot, and ELISA methods. And the expression of immune factors to evaluate the DCs maturation and T-cell activation were determined by the FACS. Our study showed that ox-LDL induced TREM-1 expression, DC maturation, and T-cell activation. T cells exposed to ox-LDL-treated DCs produced interferon- and interleukin-17 (IL-17). Blocking TREM-1 suppressed the DC maturation, showing lower expression of CD1a, CD40, CD86, CD83, and HLA-DR, and limited their production of tumor necrosis factor-alpha (TNF-), IL-1, IL-6, and monocyte chemoattractant protein-1 (MCP-1), meanwhile increased transforming growth factor-(TGF-) and IL-10 production. Ox-LDL induced miR-155, miR-27, Let-7c, and miR-185 expression; however, TREM-1 inhibiting decreased miRNA-155 expression. Furthermore, silencing miRNA-155 restores SOCS1 repression induced by ox-LDL. Experiments with T cells derived from carotid atherosclerotic plaques or healthy individuals showed similar results. Our results uncover a new link between ox-LDL and TREM-1 and may provide insight into this interaction in the context of atherosclerosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9148251PMC
http://dx.doi.org/10.1155/2022/3951686DOI Listing

Publication Analysis

Top Keywords

dendritic cells
12
t-cell activation
12
induced ox-ldl
12
trem-1
8
cells maturation
8
expression trem-1
8
maturation t-cell
8
ox-ldl induced
8
ox-ldl
7
cells
6

Similar Publications

Oncometabolites are aberrant metabolic byproducts that arise from mutations in enzymes of the tricarboxylic acid (TCA) cycle or related metabolic pathways and play central roles in tumor progression and immune evasion. Among these, 2-hydroxyglutarate (2-HG), succinate, and fumarate are the most well-characterized, acting as competitive inhibitors of α-ketoglutarate-dependent dioxygenases to alter DNA and histone methylation, cellular differentiation, and hypoxia signaling. More recently, itaconate, an immunometabolite predominantly produced by activated macrophages, has been recognized for its dual roles in modulating inflammation and tumor immunity.

View Article and Find Full Text PDF

Can Sex-based Variations in the Immune Responses to AAV Gene Therapy Affect Safety and Efficacy? A Review of Current Understanding.

AAPS J

September 2025

Gene Transfer and Immunogenicity Branch, Division of Gene Therapy 2, Office of Gene Therapy, Office of Therapeutic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, WO52 RM3124, 10903 New Hampshire Ave, Silver Spring, Maryland, 20993-0002, USA.

As the field of gene therapy advances and as the importance of sex as a biological variable in shaping viral immune responses is recognized, the impact of sex on adeno-associated virus (AAV) vectors mediated gene therapies remain largely unexplored. Here we review current understanding of the immune response against AAV gene therapy as well as the knowledge of sex differences observed in viral responses. We discuss sex differences in innate immune mechanisms such as Toll-like receptor recognition and complement activation, as well as the functional responses of key immune cells such as dendritic cells, macrophages, and T/B cells that are involved in AAV immunogenicity.

View Article and Find Full Text PDF

Dysregulated spine morphology is a common feature in the pathology of many neurodevelopmental and neuropsychiatric disorders. Overabundant immature dendritic spines in the hippocampus are causally related to cognitive deficits of Fragile X syndrome (FXS), the most common form of heritable intellectual disability. Recent findings from us and others indicate autophagy plays important roles in synaptic stability and morphology, and autophagy is downregulated in FXS neurons.

View Article and Find Full Text PDF

Monogenic lupus offers valuable insights into the underlying mechanisms and therapeutic approaches for systemic lupus erythematosus (SLE). Here we report on five patients with SLE carrying recessive mutations in phospholipase D family member 4 (PLD4). Deleterious variants in PLD4 resulted in impaired single-stranded nucleic acid exonuclease activity in in vitro and ex vivo assays.

View Article and Find Full Text PDF

At the glutamatergic synapses between rod photoreceptors and ON-type bipolar cells, neurotransmitter is detected by the postsynaptic metabotropic glutamate receptor mGluR6. This receptor forms trans-synaptic interactions with ELFN1, a presynaptic cell adhesion molecule expressed in rods, and ELFN1 is important for mGluR6 localization at bipolar cell dendritic tips. Here, we show that in mice of either sex lacking mGluR6, the presynaptic localization of ELFN1 is disrupted.

View Article and Find Full Text PDF