98%
921
2 minutes
20
Purpose: Ferroptosis and immune infiltration are involved in the pathogenesis of chronic obstructive pulmonary disease (COPD). We aim to identify ferroptosis-related hub genes and analyze their association with immune infiltration in COPD through bioinformatics methods.
Materials And Methods: The mRNA microarray data of GSE38974 were downloaded from Gene Expression Omnibus to obtain differentially expressed genes (DEGs). The DEGs were intersected with ferroptosis-related genes (FRGs) from FerrDb to obtain differentially expressed FRGs. GO and KEGG enrichment and protein-protein interaction (PPI) analyses of differentially expressed FRGs were conducted in R software and STRING database. The key module and hub genes were screened by Cytoscape software. MiRNAs, transcription factors and signal molecules were predicted in miRNet and NetworkAnalyst. The disease correlation in the Comparative Toxicomics Database (CTD) and the receiver operating characteristic (ROC) curves of hub genes were analyzed. Immune infiltration was evaluated by CIBERSORT algorithm. Spearman correlation analyses were conducted between hub genes and differentially infiltrated immune cells.
Results: Fifteen differentially expressed FRGs were identified, which were enriched in some terms involving airway inflammatory responses and structural remodeling. Five hub genes were selected including HIF1A, IL6, PTGS2, CDKN1A and ATM. Inference scores in CTD indicated their association with COPD. Two miRNAs, five transcription factors and one signal molecule were predicted. The combination of hub genes could be a fine diagnostic indicator of COPD (AUC: 0.981, CI: 0.940-1.000). Immune infiltration evaluation showed that monocytes and M0 macrophages were upregulated in COPD lung tissues, while CD8 T cells, activated NK cells, M2 macrophages, resting dendritic cells and resting mast cells were downregulated. The hub genes were significantly associated with differentially infiltrated immune cells.
Conclusion: We identified five ferroptosis-related hub genes (HIF1A, IL6, PTGS2, CDKN1A and ATM) in COPD, and found that they may influence the pathogenesis of COPD by regulating ferroptosis and thus affecting infiltrating immune cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9148178 | PMC |
http://dx.doi.org/10.2147/COPD.S348569 | DOI Listing |
Int J Gen Med
September 2025
Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.
Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.
Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.
J Inflamm Res
September 2025
Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
Introduction: While nucleus pulposus cell (NPC) degeneration is a primary driver of intervertebral disc degeneration (IVDD), the cellular heterogeneity and molecular interactions underlying NPC degeneration remain poorly characterized. Previous studies have shown that EGFR signaling plays a significant role in NPC differentiation and collagen matrix production. Consequently, this study aims to identify the critical downstream regulatory molecule of EGFR in the process of NPC degeneration.
View Article and Find Full Text PDFBiochem Biophys Rep
June 2025
Department of Public Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
Background: Synaptic dysfunction and synapse loss occur in Alzheimer's disease (AD). The current study aimed to identify synaptic-related genes with diagnostic potential for AD.
Methods: Differentially expressed genes (DEGs) were overlapped with phenotype-associated module selected through weighted gene co-expression network analysis (WGCNA), and synaptic-related genes.
Food Sci Nutr
September 2025
Department of Biology, College of Natural and Computational Sciences Mizan-Tepi University Tepi Ethiopia.
Climatic challenges increasingly threaten global food security, necessitating crops with enhanced multi-stress resilience. Through systematic transcriptomic analysis of 100 wheat genotypes under heat, drought, cold, and salt stress, we identified 3237 differentially expressed genes (DEGs) enriched in key stress-response pathways. Core transcription factors (, , ) and two functional modules governing abiotic tolerance were characterized.
View Article and Find Full Text PDFBiotechnol Appl Biochem
September 2025
Emergency Intensive Care Medicine Center, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China.
Background: Differentially expressed genes (DEGs) have been known to provide important information on disease mechanisms and potential therapeutic targets. The traditional Chinese medicine (TCM) offers a large reservoir of bioactive compounds that could modulate at these targets. This study is an attempt to investigate the biomarkers in Sepsis and COVID-19 using gene expression analysis and molecular modeling validation of TCM-derived candidate compounds targeting key DEGs associated with sepsis.
View Article and Find Full Text PDF