98%
921
2 minutes
20
A modified sigmoid sliding mode control (MS-SMC) approach is proposed for stabilizing and tracking a quadrotor system with a nonlinear sliding surface, where the dynamics model is underactuated, highly coupled, and nonlinear. The constructed nonlinear sliding surface is based on the traditional sliding mode surface with a modified sigmoid function, allowing the initial value to quickly reach equilibrium. A new type of nonlinear SMC is applied for performance improvement of the quadrotor using the proposed modified sigmoid sliding surface. To control the quadrotor effectively, a double-loop control method is used to design the control rate, in which the position subsystem is the outer loop, and the attitude subsystem is the inner loop.With the Lyapunov function, the stability of the overall closed-loop system is ensured by stabilizing each subsystem step by step. Moreover, from a practical point of view, the system performance under the model uncertainties and external disturbances are also considered. The simulation results show that the proposed MS-SMC performs better than the conventional sliding mode control (CSMC) and the back-stepping sliding mode control (BS-SMC) in terms of stabilization and tracking against external disturbances.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9147314 | PMC |
http://dx.doi.org/10.3390/s22103618 | DOI Listing |
ISA Trans
September 2025
School of Automation, Northwestern Polytechnical University,1 Dongxiang Road, Chang'an District, Xi'an, Shaanxi 710129, PR China. Electronic address:
A novel practical predefined-time sliding mode control strategy is proposed for the flight formation of a small tandem-rotor wheeled UAV (TRW-UAV) with unknown upper bound external disturbances and uncertainties in this paper. Firstly, a new predefined-time sliding mode surface is proposed to guide all errors of the position and velocity loops to converge to the origin in a predefined-time. Furthermore, a dynamic surface control approach is utilized to circumvent the higher-order differentiation when controlling the actuator loop.
View Article and Find Full Text PDFLangmuir
September 2025
ThAMeS Multiphase, Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K.
The evaporation of surfactant-laden sessile droplets has widespread applications in both natural and technological contexts. This study explores the evaporation of droplets containing a nonionic surfactant (tristyrylphenol ethoxylates (EOT)), an anionic surfactant (sodium benzenesulfonate with alkyl chain lengths of C-C (NaDDBS)), and their mixtures at / mole ratios of 0.01, 0.
View Article and Find Full Text PDFUltrasonics
September 2025
Paderborn University, Paderborn, Germany.
This study investigates the phenomenon of mode repulsion in Lamb waves propagating through two coupled plates with an elastic interface. Using a spring-based coupling model and the Scaled Boundary Finite Element Method, the dispersion curves of the coupled system are analyzed under various interface conditions-weak coupling, sliding boundary, and perfect coupling. This research highlights how the mechanical stiffness of the interface influences the separation of modes and the emergence of repulsion regions.
View Article and Find Full Text PDFMod Pathol
September 2025
School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China. Electronic address:
Deep learning (DL) has significantly improved the diagnostic accuracy and efficiency of cytopathologists. However, current DL-assisted reading modes have yet to be fully evaluated, and there is limited evidence regarding cytopathologists' preferences and experiences. This study employs a randomized, controlled, four-way crossover design to assess the effectiveness of four different reading modes in cervical cytopathology readings.
View Article and Find Full Text PDFISA Trans
August 2025
College of Electrical Engineering, Sichuan University, Chengdu, 610065, China. Electronic address:
In this study, the problem of trajectory tracking optimal control of robotic manipulator system subjected to external load disturbances is investigated, and an observer-based discrete fast terminal sliding mode predictive optimal control (FTSMPC) strategy is presented. Firstly, to address the unknown friction torque and load disturbances, a novel discrete-time extended state observer is designed to estimate the lumped disturbances, in which the boundedness of the observation error can be guaranteed through theoretical analysis. Then, with the outputs of the observer, an FTSMPC control approach is designed.
View Article and Find Full Text PDF