Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Flavonoid metal ion complexes are one of the classes of biologically active molecules with immense pharmacological potential, including antioxidant, antidiabetic, antimicrobial, and anticancer activity, to name a few. The effectiveness of this complexion depends on the state and nature of the transition metal ions and on the position to which the metal ion coordinates with their corresponding parent flavonoid. The metal coordination of flavonoids also improves the biological activities to a maximum extent compared to the parent compound. This may be attributed to many factors such as metal ions, coordination sites, structural configuration, and stability of the complexes. On the other hand, some of the metal ion complexes reduce the biological efficiency of the corresponding parent flavonoids, which can be due to the shift from antioxidant to pro-oxidant nature as well as the stability of the complexes both in in vitro and in vivo conditions. However, the literature on the stability of flavonoid metal ion complexes in in vivo conditions is very scanty. Therefore, this review summarizes and critically addresses all these parameters a favor together in a single slot that favours for the researchers to put forward to understand the mode and detailed molecular mechanism of flavonoid metals complexes compared with their corresponding parent flavonoids.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1871520622666220520093018DOI Listing

Publication Analysis

Top Keywords

metal ion
16
flavonoid metal
12
ion complexes
12
corresponding parent
12
transition metal
8
metal coordination
8
active molecules
8
metal ions
8
stability complexes
8
parent flavonoids
8

Similar Publications

The failure of the therapeutic administration of superoxide dismutase (SOD) and catalase (CAT) enzymes to prevent oxidative stress has fostered the development of metal complexes that are capable of mimicking their activity. In the present work, two new pyridine azacyclophane ligands capable of coordinating Cu and Fe to give rise to mimetics with high activities toward disproportionation of the superoxide anion or hydrogen peroxide, depending on the metal ion, have been prepared. Although the Cu complexes have some of the highest SOD activities reported to date, they are completely inactive toward HO disproportionation.

View Article and Find Full Text PDF

Fluorinated Imidazolidinium Cations as a Fluorine-Lean Interface Repairing Agent for Li-Metal Batteries.

ACS Appl Mater Interfaces

September 2025

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China.

Li-metal batteries promise ultrahigh energy density, but their application is limited by Li-dendrite growth. Theoretically, fluorine-containing anions such as bis(fluorosulfonyl)imide (FSI) in electrolytes can be reduced to form LiF-rich solid-electrolyte interphases (SEIs) with high Young's modulus and ionic conductivity that can suppress dendrites. However, the anions migrate toward the cathode during the charging process, accompanied by a decrease in the concentration of interfacial anions near the anode surface.

View Article and Find Full Text PDF

Novel Thermal Modification of Phosphate Tailings for Enhanced Heavy Metals Immobilization in Soil.

Environ Res

September 2025

State Key Laboratory for Ecological Security of Regions and Cities, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China. Electronic address:

Recent interest in amendments derived from industrial by-products has highlighted their potential for both resource recycling and heavy metal remediation. Phosphate tailings (PT), primarily dolomite-based solid waste with low utilization rates, offer a promising yet underexplored solution. This study pioneers the thermal modification of PT into a novel amendment, thermally modified phosphate tailings (TPT), to assess its adsorption performance, underlying mechanisms, and effectiveness in immobilizing heavy metals in soils.

View Article and Find Full Text PDF

Lignin, a negatively charged, three-dimensional natural biopolymer, serves as an ideal support for metal catalysts due to its abundant functional groups and tunable chemical properties, which enable strong metal coordination and effective immobilization. Herein, we demonstrate a lignin-mediated Co/O co-doped AgS, symbolized as L-AgCoOS, bimetal oxysulfide catalyst via a facile hydrolysis method for the efficient reduction of toxic phenolic compounds (4-nitrophenol, 4-NP), organic dyes (methyl orange (MO), methylene blue (MB), rhodamine B (RhB), and heavy metal ions Cr(VI)) under dark conditions. Lignin, used to immobilize catalysts, also contributes to increasing the number of active catalytic sites and enhancing catalytic activity.

View Article and Find Full Text PDF

Harnessing the significant buildup of lactic acid (LA) within the tumor microenvironment (TME) for metabolic manipulation presents a promising avenue for cancer treatment. Nevertheless, single-agent therapies often fail to address the complex and varying needs of TME heterogeneity, posing a substantial scientific hurdle in oncology. In this context, we employ asymmetric mesoporous silica nanoparticles (AMS NPs) as delivery vehicles, simultaneously loading them with zinc‑cobalt‑manganese ferrite nanoparticles (ZCMF NPs), lactate oxidase (LOX), and doxorubicin (DOX).

View Article and Find Full Text PDF