Outlook on bismuth-based photocatalysts for environmental applications: A specific emphasis on Z-scheme mechanisms.

Chemosphere

Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India; Faculty of Pharmaceutical Sciences, UCSI University, 56000, Cheras, Kuala Lumpur, Malaysia. Electronic address: sureshbabup.sse@s

Published: September 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Semiconductor photocatalysis is thought to be a viable solution for addressing the growing problem of environmental pollution. Bismuth (Bi) metal oxides can function as a direct plasmonic photocatalyst or cocatalyst to accelerate the photogenerated charge separation and thus improve their photocatalytic activity. Hence, Bi-based photocatalysts have received a lot of attention due to their extensive environmental applications, including pollutant remediation and energy concepts. Massive efforts have been undertaken in the recent decade to find superior Bi-metal oxides (BiXO X = MO, W, or Cr) and to uncover the corresponding photocatalytic reaction mechanism for the degradation of organic contaminants in water. Herein, the unique crystalline and electronic properties and main synthesis methods, as well as the major Bi-Based direct Z-scheme photocatalysts, are timely discussed and summarized in their usage in water treatment. Besides, the impact of BiXO in energy storage devices and solar energy conversion is reviewed as an energy application. Finally, the future development and challenges of Z-scheme-based BiXO photocatalysts are briefly explored, summarized, and forecasted.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.135052DOI Listing

Publication Analysis

Top Keywords

environmental applications
8
outlook bismuth-based
4
photocatalysts
4
bismuth-based photocatalysts
4
photocatalysts environmental
4
applications specific
4
specific emphasis
4
emphasis z-scheme
4
z-scheme mechanisms
4
mechanisms semiconductor
4

Similar Publications

Background And Aim: Synthetic dyes in the textile industry pose risks to human health and environmental safety. The current study aims to examine the efficacy of a novel esterase derived from an endophyte fungus in decolorizing diverse dyes, focusing on its production, purification, optimization, and characterization.

Results: Trichoderma afroharzianum AUMC16433, a novel fungal endophyte with esterase-producing ability, was first detected from the cladodes of Opuntia ficus indica by ITS-rRNA sequencing.

View Article and Find Full Text PDF

Background: Although current evidence supports the effectiveness of social norm feedback (SNF) interventions, their sustained integration into primary care remains limited. Drawing on the elements of the antimicrobial SNF intervention strategy identified through the Delphi-based evidence applicability evaluation, this study aims to explore the barriers and facilitators to its implementation in primary care institutions, thereby informing future optimization.

Methods: Based on the five domains of the Consolidated Framework for Implementation Research (CFIR), we developed semi-structured interview and focus group discussion guides.

View Article and Find Full Text PDF

Drought stress affects plant growth and production. To cope with drought stress, plants induced physiological and metabolic changes, serving as a protective approach under drought-stress conditions. The response to drought can vary based on plant type (C3 vs.

View Article and Find Full Text PDF

Forests have been increasingly affected by natural disturbances and human activities. These impacts have caused habitat fragmentation and a loss of ecological connectivity. This study examines potential restoration pathways that reconnect the five largest forest cores in the Castilla y León region of Spain.

View Article and Find Full Text PDF

Cadmium (Cd) contamination in water poses a critical global challenge. A novel nanocomposite, montmorillonite (Mt)-supported nanoscale zero-valent iron (Mt-nZVI), synthesized by liquid phase reduction, offers a promising method for effectively removing Cd. The material underwent characterization through various techniques, including X-ray diffraction (XRD) and Scanning Electron Microscope(SEM).

View Article and Find Full Text PDF