98%
921
2 minutes
20
Extracellular vesicles (EVs) play an essential role in the communication between cells and the tumor micro-environment. However, the effect of tumor-derived EVs on the growth and metastasis of lung adenocarcinoma (LUAD) remains to be explored. This study aimed to elucidate the role of miR-153-3p-EVs in the invasion and migration capabilities of LUAD cells and explore its mechanism through and experiments. We found that miR-153-3p was specifically and highly expressed in LUAD and its secreted EVs. Furthermore, the expression of BANCR was negatively regulated by miR-153-3p and identified as a target gene of miR-153-3p using luciferase reporter assays. Through further investigation, we found that the downregulation of BANCR activates the PI3K/AKT pathway and accelerates the process of epithelial-mesenchymal transition (EMT), which ultimately leads to the aggravation of LUAD. The orthotopic xenograft mouse model was established to illustrate the effect of miR-153-3p-EVs on LUAD. Animal studies showed that miR-153-3p-EVs accelerated tumor growth in mice. Besides, we found that miR-153-3p-EVs could damage the respiratory ability of mice and produce a mass of inflammatory cells around the lung tissue of mice. Nevertheless, antagomir-153-3p treatment could inhibit the deterioration of respiratory function and inhibit the growth of lung tumors in mice. In conclusion, our study reveals the potential molecular mechanism of miR-153-3p-EVs in the development of LUAD and provides a potential strategy for the treatment of LUAD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9200658 | PMC |
http://dx.doi.org/10.14348/molcells.2022.2221 | DOI Listing |
Genes Genomics
September 2025
Department of Clinical Laboratory, The First Affiliated Hospital of Guilin Medical University, Le Qun Road 15, Guilin, 541001, Guangxi, China.
Background: Lung cancer (LC) is the leading cause of cancer-related deaths globally. Genetic variants in mismatch repair (MMR) genes, such as MutS homolog 2 (MSH2), MutS homolog 6 (MSH6) and MutL homolog 1 (MLH1), may influence individual susceptibility and clinical outcomes in LC.
Objective: This study investigated the associations of genetic polymorphisms in MSH2, MSH6, and MLH1 with susceptibility and survival outcomes in lung cancer patients in the Guangxi Zhuang population.
Langenbecks Arch Surg
September 2025
Department of Surgery HBP Unit, Simone Veil Hospital, University of Reims Champagne-Ardenne, Troyes, France.
Introduction: Pancreatic adenocarcinomas (PDAC) have a poor prognosis, with a 5-year relative Survival rate of 11.5%. Only 20% of patients are initially eligible for resection, and 50% of patients presented with metastatic disease, currently only candidates' palliative treatment.
View Article and Find Full Text PDFMol Cell Biochem
September 2025
Department of Laboratory Medicine, The People's Hospital of Zhongjiang, No. 96, Dabei Street, Kaijiang Town, Zhongjiang County, Deyang City, 618100, Sichuan Province, China.
5-methylcytosine (m5C) methylation is a post-transcriptional modification of RNAs, and its dysregulation plays pro-tumorigenic roles in lung adenocarcinoma (LUAD). Here, this study elucidated the mechanism of action of NSUN2, a major m5C methyltransferase, on LUAD progression. mRNA expression was analyzed by quantitative PCR.
View Article and Find Full Text PDFInt J Surg
September 2025
Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
Background: Precise preoperative discrimination of invasive lung adenocarcinoma (IA) from preinvasive lesions (adenocarcinoma in situ [AIS]/minimally invasive adenocarcinoma [MIA]) and prediction of high-risk histopathological features are critical for optimizing resection strategies in early-stage lung adenocarcinoma (LUAD).
Methods: In this multicenter study, 813 LUAD patients (tumors ≤3 cm) formed the training cohort. A total of 1,709 radiomic features were extracted from the PET/CT images.
AJR Am J Roentgenol
September 2025
Department of Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China, 510120.